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Preface

Complex dynamics is today very much a focus of interest. Though
several fine expository articles were available, by P. Blanchard and by
M.Yu. Lyubich in particular, until recently there was no single source
where students could find the material with proofs. For anyone in
our position, gathering and organizing the material required a great
deal of work going through preprints and papers and in some cases
even finding a proof. We hope that the results of our efforts will be
of help to others who plan to learn about complex dynamics and
perhaps even lecture. Meanwhile books in the field are beginning to
appear. The Stony Brook course notes of J. Milnor were particularly
welcome and useful. Still we hope that our special emphasis on the
analytic side will satisfy a need.

This book is a revised and expanded version of notes based on
lectures of the first author at UCLA over several Winter Quarters,
particularly 1986 and 1990. We owe Chris Bishop a great deal of
gratitude for supervising the production of course notes, adding new
material, and making computer pictures. We have used his computer
pictures, and we will also refer to the attractive color graphics in the
popular treatment of H.-O. Peitgen and P. Richter.

We have benefited from discussions with a number of colleagues,
and from suggestions of students in both our courses. We would



vi Preface

particularly like to acknowledge contributions from Peter Jones and
M. Shishikura. Any reader familiar with the area will recognize the
exposition of quasiconformal mappings from Ahlfors’ book. It is often
difficult to trace particular results to the rightful owners, particularly
in such a rapidly developing area where so much seems to flow by
word of mouth. We apologize for any inadequacy and for omissions.

L. Carleson and T.W. Gamelin
Los Angeles, March, 1992
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I

Conformal and Quasiconformal
Mappings

We discuss some topics that are not included in the standard in-
troductory graduate course in complex analysis. For the most part,
we assume only the background provided by elementary graduate
courses in real and complex analysis. There are a few exceptions.
We use covering spaces and at one point the uniformization theorem,
which can be found in Chapters 9 and 10 of [A3]. A readable discus-
sion of the Poisson kernel and Fatou’s theorem is given in Chapter
1 of [Ho]. In discussing the Beurling transform we appeal to the
Calder6n-Zygmund theorem, which can be found in [St] or [A2].

1. Some Estimates on Conformal Mappings

A mapping f is called conformal if it is analytic and one-to-one.
Such mappings are also called univalent. Let S be the collection of
univalent functions in the open unit disk A = {|z| < 1} such that
f(0) = 0 and f’(0) = 1. The compactness properties of this class are
of crucial importance for our study.

THEOREM 1.1 (area theorem). Let g(z) = 1/z+bo + b1z + ... be
univalent in A (with a pole at z = 0). Then Y n|b,|? < 1.
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Proof. For 0 < r < 1 set D, = C\g(A,), where A, = {lz| < r}. By
Green'’s theorem,

1 -1
area D, = // drdy = — Zdz = — gdg.
D, 2i Jop, 2t Jon,

Substituting the power series expansions for g and ¢’ and integrating,

we obtain -
1
area D, = w(;j — Z n\bn|2r2">.

n=1

Since area D, > 0, taking 7 — 1 gives the result. O
THEOREM 1.2. If f(2) = 2+ Y arqan2™ € S, then lag| < 2.

Proof. Define g(z) = 1/y/f(2?) = 1/2 —agz/2+ - If g(z1) = g(z2),
then f(22) = f(23), 22 = 23, and 21 = £22. But g is odd, so z1 = 22.
Hence g is univalent. The area theorem gives lag| < 2.0

THEOREM 1.3 (Koebe one-quarter theorem). If f € S, then the
image of f covers the open disk centered at 0 of radius one-quarter,
that is, f(A) D A(0,1/4).

Proof. Fix a point ¢, and suppose f # ¢ in A. Then

C—C;f—gt%((—)z—)zz+<a2+%>22+---

belongs to S. Applying Theorem 1.2 twice, we obtain

= < ool +
lc]
The Koebe function f(z) = z/(1 —2)? = Y. nz" maps the disk
A to the slit plane C\(—oco, —1/4]. This shows that one-quarter is
optimal.
The Koebe one-quarter theorem and the Schwarz lemma combine
to give

1
a2+—,§2+2:4. 0
C

(S ds0,0/(A) <1, feS,

where “dist” denotes distance. To prove the upper estimate, note
that the image of f € S cannot cover the closed unit disk, or else !
would map A to a proper subdomain, contradicting f(0) =1.If we
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translate and scale, we obtain dist(f(z9),0f(A(Co,d)) > 6|f'(20)|/4
from the lower estimate whenever f is univalent on the open disk
A(zp,6). This leads to the following.

THEOREM 1.4. If f is univalent on a domain D, and 2y € D, then
1 . . .
1|1 (z0)ldist(z0,0D) < dist(f(20), 6(f(D))) < 41f'(20)|dist(z0, ID).

Proof. The lower estimate follows immediately from the statement
preceding the theorem, and the upper estimate is obtained by ap-
plying the lower estimate to f~! at the point f(zq). O

We aim now at proving some stronger distortion results.

THEOREM 1.5. If f € S, then

2f"(2) 2 | 4l
) 1= aE| S T

Proof. Fix ¢ € A and consider
f((z+¢)/(1+¢2)) - f(¢)
(1 —=1¢P)f(€)

Then F € S, so by Theorem 1.2, |a2(¢)| < 2. A computation shows

aald) = {1 - e ) - 2c).

F(z) = =z+ay(()22+

The assertion follows. O

THEOREM 1.6 (distortion theorem). If f € S, then

1 - |7]

1+ |z|
a+)2)p <|f'(2)I < =

EDX

and
= 2]

e S VE=s g

Proof. Using Theorem 1.5, we estimate

- <

0 ! 0
5 log |f/(re”)|
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Integration from 0 to r yields

; 1+|2
gl ()| < log 115,

which is the right-hand side of the first estimate. The right-hand side
of the second estimate follows by another integration. To prove the
lower bound for |f’(z)|, apply the upper bound to the function F
appearing in the proof of Theorem 1.5. The lower bound for |f(2)|
is obtained as follows. For fixed 0 < r < 1, choose zg so that |f(20)]
is the minimum of |f(z)| for |z| = r, and let v be the curve in A
mapped by f to the radial line segment from 0 to f (20). Then f'(¢)d¢
has constant argument along 7, so that |f(20)| coincides with the
integral of | f'(¢)||d(| along 7. Integrating the lower estimate for |f'|,
we obtain the lower estimate for |f(zo)|. O

THEOREM 1.7. If f € S, then

dist(£(2),0f(A)) > 1—16(1 _12)? zeA.

Proof. We apply the Koebe one-quarter theorem (or the earlier dis-
tance estimate) to the function F' appearing in the proof of Theorem
1.5, to obtain

dist(£(2), F(O8)) = 31/ (1= [, z€ A

The lower estimate for |f/(z)| in the distortion theorem then gives
the result. O

THEOREM 1.8. If f(2) = 2 + 102 gan2™ € S, then |an| < en?.

Proof. Using the distortion theorem to estimate |f(2)|, we obtain

1 f(2) l rl=n
dz| < —— .
27r'L \/lzlz,’_ Zn-f—l 2> (1 _ ’I‘)2, 0 <r < 1

lan| =

The choice r = 1 — 1/n yields the desired estimate. U

The Koebe function shows that each of the estimates of the distor-
tion theorem are sharp. The lower estimate for |f(2)| can be viewed
as a strong form of the Koebe one-quarter theorem. The constant
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1/16 appearing in Theorem 1.7 is also sharp. The coefficient estimate
of Theorem 1.8 is rather crude, but good enough for our application
in Section V.1. With some more effort we could obtain the estimate
lan| < en due to J.E. Littlewood (1925). It had been conjectured by
L. Bieberbach (1916) that in fact |an| < n. The Bieberbach conjec-
ture was settled affirmatively by L. deBranges (1985). The Koebe
function shows this estimate is sharp.

Suppose F is a family of meromorphic functions in a domain D C
C. We say F is a normal family if every sequence {f,} in F contains
a subsequence that converges uniformly in the spherical metric, on
compact subsets of D. By the Arzela—Ascoli theorem, this is the same
as saying the family is equicontinuous (with respect to the spherical
metric) on every compact subset of D. Note that we allow f, — 00
in the definition of normal family. Thus it is convenient to consider
the function f = oo to be meromorphic. The following theorem,
first stated explicitly by P. Montel in his thesis (1907), will be used
frequently.

THEOREM 1.9. The family F of analytic functions on D bounded by
some fized constant is normal.

Proof. Tt is sufficient to prove the theorem for a disk (cover D by
disks), and we may take the unit disk. Then if f € F satisfies | f| < M
and if |z| < r < 1, Cauchy’s estimate implies |f'(z)| < M/(1 — ).
Thus the family is equicontinuous, hence normal. O

THEOREM 1.10. The family S is normal, and the limit of any se-
quence in S belongs to S.

Proof. Normality is clear since |f(z)| is uniformly bounded on com-
pact subsets of A, by Theorem 1.6. Limit functions are in S on
account of Hurwitz’s theorem and the normalization f'(0) = 1. O

2. The Riemann Mapping

The Riemann mapping theorem asserts that if D is a simply con-
nected domain in C whose boundary contains at least two points,
there is a conformal mapping v of the open unit disk A onto D. We
can map 0 to any fixed point of D, and also specify the argument of



6 1. Conformal and Quasiconformal Mappings

¥/(0), and then the Riemann mapping is unique. For the standard
proof, see [A1]. We are concerned here with the boundary behavior
of the Riemann mapping. We aim to establish two fundamental the-
orems due respectively to C. Carathéodory (1913) and E. Lindel6f
(1915).

We will say that a compact set K is locally connected at 29 € K
if for every sequence {z,} C K converging to zo there is, for n
large, a connected set L, C K containing both 29 and z,, such that
diam(L,) — 0. A compact set is locally connected if it is locally
connected at every point. On the right of Figure 1 is a connected set
which is not locally connected.

THEOREM 2.1 (Carathéodory). Let D be a simply connected domain
in C whose boundary has at least two points. Then 0D is locally
connected if and only if the Riemann mapping ¢ : A — D extends
continuously to the closed disk A.

Proof. First suppose ¥ extends continuously. Let z € 0D, and let
{2n} be a sequence in 0D converging to z. Taking (n € ¥~ (2,) and
passing to a subsequence, we assume (, — (. By continuity, P() =
2. The arc v = ¥([Cn, ¢]) is a connected subset of D containing zn
and z. Since v is uniformly continuous, diam(vy,) — 0. Hence oD is
locally connected at z.

For the other direction, suppose D is locally connected and as-
sume oo = 9(0) € D. Fix (o € OA. For p > 0 consider v, = {{ € A

|¢ — Co| = p}. Define

L(p) = / ' (O)l1dc],

the length of the image curve ¥(v,) in D. By the Cauchy-Schwarz
inequality
L(p)* <mp | [¥'(O)ldc],
Yp
S0

/6 L(p)2dp <m // ¥/ (¢)[*dédn = mareap(A N A(Co, 6)) < oo
o f ANA(o,6)

Hence there is a sequence p, — 0 with L(p,) — 0. The curves
I'n, = ¥(v,.) have endpoints an, Bn € 0D and |an — Bn| — 0. We
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FIGURE 1. Locally connected, and not locally connected.

can assume that apn, 3, tend to wg € &D. Using the definition of
local connectedness at wg, we find connected subsets L, C 0D with
Wn, Qn, Bn € Ly and diam(L,) — 0. Now I';, separates D into two
connected components, one containing co = %(0). Let D, be the
bounded component of D\I',. We claim that D, is contained in a
bounded component of C\(I',UL,). Indeed, otherwise we could draw
a simple arc from a fixed point zg € Dy, to oo in C\(I'nUL,), followed
by another arc from oo to 2o in D crossing I', exactly once, to obtain
a simple closed Jordan curve in C\ L, which separates a;, and [y,
contradicting the connectedness of L. Since diam(I'y U L,) — 0,
also diam(D,,) — 0, and hence 9 is continuous at (o. O

Let D be the domain at the left of Figure 1, whose boundary
includes a union of spikes emanating from 0 at rational angles, so
that (say) the spike at angle 27p/q has length 1/q. Since 9D is
locally connected, the Riemann mapping ¥ of A onto D extends
continuously to dA. However the point 0 € JD is the inverse image
under v of a Cantor set on the unit circle. Thus even a continuous
Riemann mapping can have “bad ” behavior.

Recall that a Stolz angle at {y € DA is a sector in A with vertex at
(o and aperture strictly less than m, bisected by the radius (see Figure
2). The property of Stolz angles we require is that if u is a harmonic
function, u > 0, such that liminfu({) > 1 as ¢ tends to a boundary
arc on one side of (o with endpoint at (p, then liminfu({) > ¢ >0
as ( tends to (p through any fixed Stolz angle. This is easiest to see
in the upper half-plane, where a Stolz angle corresponds to a sector
with vertex zo € R of the form {n < arg(z — z¢) < m —n}. Here one
compares u with the harmonic function arg(z — zo) to obtain the
estimate with e = n/~.
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For the local study of a conformal mapping at a boundary point 2o,
we will appeal several times to the following immediate consequence
of two well-known theorems of Lindelof.

THEOREM 2.2. Let D C C be simply connected, suppose 0D has
more than one point, and let ¥(C) map A conformally to D. Let~y be
a Jordan arc in D except for one endpoint zg € OD. Then the curve
¥~ ! oy terminates in a point (o € OA, and P(¢) — 20 as ( — Co
inside any Stolz angle at (.

Proof. Let T be the curve 9~ (y\{20}) in A, which clusters on 0A.
We first want to prove that I' has a unique cluster point (o on O0A. For
this we could use Fatou’s theorem, but let us give a more geometric
proof. We wish to use some conformal invariant and let us consider
a Dirichlet integral. We may assume D is bounded. Define

)= (1og" l—l——)m.

z— 20| +¢€

A simple computation shows that independently of € > 0,
D(f) = //D |V f|2dzdy < M < oco.
Let F(¢) = f(4(()) so that
D(F) = [[ [VFidean = D(f) < M.

If T does not tend to a point (o, there exists a sector 6; < 6 < 62
such that T' crosses to opposite sides of the sector infinitely often as
it tends to the boundary. Then

OF i)

1
/0 or
for f; < 6 < 5. Using the Schwarz inequality we find
6o 1
!
01 0

which contradicts D(F) < M. Thus I accumulates at only one point
Co of the circle, and we can assume that (o = 1.

dr > <10g 2)1/3 -C, (C=F(0)),

2 2/3
—a-ﬁ(re“g) rdr > 6<log 1) —2nC,
or €
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FIGURE 2. Stolz angles.

For p < 1let T', be the subarc of I" lying in the annulus p < [{| < 1
with one endpoint (, on the circle || = p and the other at the
terminal point 1 of I'. Then I', divides the slit annulus {p < [{| <
1}\(—1, —p) into two components. Let U be (say) the top component.
Let w(¢) be harmonic in U, equal to 1 on I', and equal to 0 on the
rest of OU . Let € = €(p) be the supremum of |¢)(¢) — 29| over ( € Iy,
so that € — 0 as p — 1. Assume as we may that D C {|z| < 1/2}
so that |¢({) — 29| < 1. By the maximum principle and the fact that
log [(C) — 20| < 0 on U,

log [¢(¢) — 20| <w(()loge

in U. We obtain a minorant w*({) of w(() by replacing I, by the arc
A from 1 to —1 along the bottom half of {|(| = 1} and defining w*(¢)
harmonic in the ring R = {p < |{| < 1} slit along (-1, —p). Then
w*(¢) = 0 on OR except on A where w* = 1. The estimate above
now holds in U, with w* replacing w. According to our preliminary
remarks, liminfw*(¢) > ¢ > 0 as ( — 1 inside any fixed Stolz angle
S. Hence

limsup |¢(¢) — 2| < €€,
S3¢(—1

so that ¢({) — 2o as asserted. O

3. Montel’s Theorem

It was P. Montel (1911) who formulated the notion of a normal family
of meromorphic functions and realized that the modular function



10 1. Conformal and Quasiconformal Mappings

could be used to derive the criterion for normality which bears his
name. This provided a key ingredient for the work of Fatou and Julia
on complex iteration theory later in the decade.

Let R and S be Riemann surfaces. A holomorphic map P : R— S
is a covering map if every w € S lies in a coordinate disk U such that
each connected component of P~!(U) is mapped conformally by P
onto U. Let S be the universal covering surface of S, obtained from
S by regarding all loops around boundary points as nontrivial, and
let P : S%° — S denote the universal covering map (see [Sp],[A3]).
We will use the fact that any map f from a simply connected surface
D to S can be lifted to a map f: D — S, satisfying P o f = f.
The value f(z0) € P~}(f(20)) can be specified arbitrarily, and this
determines the lift f uniquely. The other lifts of f are the maps po f ,
where ¢ is a covering transformation, that is, a conformal self-map
of S satisfying P o ¢ = P. One consequence of the lifting property
is that if f is itself a covering map of a simply connected surface D
onto S, then the lift f: D — S is one-to-one and onto, so that D
is conformally equivalent to S*°.

THEOREM 3.1. If D = C\{0, 1} is the thrice-punctured sphere, then
D> is conformally equivalent to the open unit disk A.

Proof. Since A is conformally equivalent to the upper half-plane H =
{y > 0}, it suffices to find a covering map of H onto D. We construct
such a map, the so-called modular function, as follows. Let E = {z:
0 <z < 1,]z—1/2| > 1/2}. In view of the Riemann mapping
theorem, there is 1 mapping E to H fixing 0, 1,00. Let E* denote
the reflection of E through the circle {|z — 1/2| = 1/2}. By the
Schwarz reflection principle, we can extend 9 to a conformal mapping
of E U E* to C\(—00,0] U [1,00). By continuing to reflect we can
extend 9 to all of {0 < z < 1,y > 0} taking its values in C\{0,1}.
By reflecting across the vertical lines {z = n} for n an integer, we
can extend v to all of H. From the construction one sees that the
extended v is a covering map of H over D.O

THEOREM 3.2 (Montel’s theorem). Let F be a family of meromorphic
functions on a domain D. If there are three fized values that are
omitted by every f € F, then F is a normal famaly.

Proof. We may assume that D is a disk, and, by composing with a
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Mobius transformation, we may assume that the functions in F do
not assume the values 0,1,00. Let S = C\{0,1}. By Theorem 3.1,
there is a covering map ¢ : A — S. Let f :D — Abealift of f € F,
so that f ot = f. Then { f : f € F} is a normal family, by Theorem
1.9, and this implies that F is normal. O

The uniformization theorem states that every simply connected
Riemann surface is conformally equivalent to exactly one of the unit
disk A, the complex plane C, or the Riemann sphere C. Moreover,
every Riemann surface has one of these three as its universal cover.
The three cases are referred to as hyperbolic, parabolic, and elliptic,
respectively. For a proof of the uniformization theorem see [A3]. We
will require the following criterion for a surface to be hyperbolic.

THEOREM 3.3. Let R be a Riemann surface that has a nonconstant
meromorphic function omitting at least three values. Then R, its
universal covering surface, is conformally equivalent to the unit disk,
with any given point corresponding to the origin.

Proof. Let P : R*® — R be the universal covering map. If f on R
omits three values, then fo P is a nonconstant meromorphic function
on R* that omits three values, say {0, 1, 00}. Using a covering map
of A onto C\{0,1}, we can lift f o P to a nonconstant function
from R* to the the open unit disk A. Thus R*® is not conformally
equivalent to C or C, and consequently R is hyperbolic. O

4. The Hyperbolic Metric

A conformal mapping of A onto itself has the form w = ew(z —
a)/(1 —@z) for some 0 < § < 27 and |a| < 1. A computation yields

dw| 1—|w]?
dz| 1—]z2’
from which we see that
2ldz|  2|dw]

dp = =
P1- |22 1—w|?

is invariant under the mapping. The metric dp is called the hyperbolic
(or Poincaré) metric on A. From the hyperbolic metric, we get a



12 1. Conformal and Quasiconformal Mappings

distance p(z1,22) in the obvious way by integrating along curves
from z; to 2z and taking the infimum. One checks that

1+ |2|
=log —— A.
p(0, z) = log T z €

Using a covering map P : A — S, we define a hyperbolic met-
ric dpg on any hyperbolic Riemann surface S by declaring that P
induces an isometry at every point. In other words, we set

2|dw|

dps(z) = TTITU_P, z = P(w) €S

If ¢ is a local determination for P! this formula becomes

2|¢'(2)|
dpS(Z) = Wldl', z€S.
Since dp is invariant under conformal self-maps of A, this is indepen-
dent of the choice of the branch ¢ of P!, and it is also independent
of the choice of the covering map P. As an example, using the con-
formal map ¢(z) = (z — i)/(z + 1) of the upper half-plane H onto
the unit disk A, we compute the hyperbolic metric of the upper
half-plane to be

d
de(z)=|—yi|, z=z+1y,y>0.

A holomorphic map f : R — S allows us to pull back differentials
on S to differentials on R by the obvious formula (chain rule). Thus
we can pull back the hyperbolic metric dpg on S to a metric on R,
which we denote by f*(dps)-

THEOREM 4.1. Suppose f maps a hyperbolic Riemann surface R
holomorphically into a hyperbolic surface S. Then

f*(dps) < dpr,
ps(f(z1), f(z2)) < pr(21,22), 21,22 € R,

with strict inequality unless f lifts to a Mobius transformation map-
ping A onto A.
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Proof. The second estimate is just the integrated version of the first.
In the case R = § = A, the first boils down to G. Pick’s (1915)
invariant form of the Schwarz lemma,

oy < LGP
|f (Z)|S1—“|z|2_’ z € A.

This is obtained from the Schwarz lemma by pre- and postcomposing
with the appropriate Mébius transformations. For the general case,
we check the estimate at a fixed point 29 € R. Let wy = f(2), and
consider covering maps P: A — Rand Q : A — S satisfying P(0) =
20, Q(0) = wo. We lift f to an analytic function F' : A — A satisfying
QoF = foP, F(0) =0. It suffices to check that F*(dp(¢)) < dp(2)
at z = 0. Now

F*(dp()) = 72 2]

—TW|CZZ|’ ZEA,

so the estimate becomes |F'(0)| < 1. This holds, with equality only
when F' maps A conformally onto A. O

THEOREM 4.2. Suppose R C S. Then dpg > dps with strict inequal-
ity unless R=S.

Proof. Apply Theorem 4.1 to the inclusion map. O

THEOREM 4.3. Let D be a domain in C, and for z € D, let §(z)
denote the distance from z to dD. Then if D is simply connected,

%% < dop(e) —Q%- (4.1)
For general domains as z — 0D,
1+ 0(1) dz]
5(2) log(1/8(z)) 421 = 0 (2) < 2505 (42)

Proof. For the right-hand sides, observe that D’ = A(zg, 6(2)) C D,
so by Theorem 4.2, dpp(20) < dpp(20) = 2|dz|/6(20). For the the
left-hand side of (4.1), let ¢ map A to D with ¥(0) = z. By the
Koebe one-quarter theorem, 1) takes all values in A(z,[’(0)|/4),
and hence 6(29) > [¢/(0)|/4, which gives the desired inequality.
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To prove the left-hand side of (4.2), let z; be a point in OD closest
to zo and choose two other points 22 and 23 € dD. Assume z; = 0,
zo = 1, and 23 = oo. Let D' be the complement of {0, 1,00}. Then
dpp > dpp:, so we only have to estimate dpp: near z; = 0. Let
¢ : H — D' be the modular function, constructed in the proof of
Theorem 2.1. Then ¥(w + 2) = ¥(w), so that ¥ can be expanded as
a Laurent series in €. Since 1) maps a neighborhood of i0o in the
strip {0 < Rew < 2} onto a punctured neighborhood of 0o, ¥ has a
simple pole, and z(w) = 1/¢(w) has a simple zero,

z(w) = bre™ + by ™ + - -, Imw > 0,

where b; # 0. Solving for w, we obtain

1 . dw 1 .
w(z) = o log z + analytic, 5 miz + analytic.

Now z(w) is a covering map of H over D', so it can be used to express
the hyperbolic metric of D' in terms of that of H,

M_ dw| |dz| |dz| [ 0(1) ],

dop () = 1 = | g [Tmw(e) ~ TeTlog/12) | log(1/12])

from which the estimate follows. O

We end this section with an estimate for Green’s function which
will be useful for the study of the Mandelbrot set. The estimate,
which appears in [CalJ], is a simple variant of estimates for harmonic
measure and Green’s function in the thesis of A. Beurling (pp. 29-30
of [Beu]).

THEOREM 4.4. Let D be simply connected, and let §(z) be the dis-
tance from z € D to D. Let G(z, z0) be Green’s function for D with
pole at 20 € D. If z € D satisfies G(z,20) < 1, then there is an arc
~ from zp to z in D such that

G(z,20) < 3exp<— %ﬁ%)

Proof. Map D conformally to the unit disk A with zp going to 0. In
these coordinates G(z, z0) = — log|{(2)|. Also note the identity
1+e4

1
G(Z, Z()) = 10g m = log i—j—e_—A, (43)
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where

i<l dr 1+ [¢]
/0 -2~ %1

is the hyperbolic distance from 0 to ¢, that is, from zg to z. From (4.3)
and the assumption G(z, z9) < 1, we obtain e 4 < (e—1)/(e+1) <
1/2. Hence

By Theorem 4.3,

where v is the (geodesic) path in D corresponding to the ray in
A from 0 to (. If we insert these estimates in (4.3) the theorem
follows. O

5. Quasiconformal Mappings

The reason why quasiconformal mappings are so useful in iteration
theory is that these mappings allow for the kind of complicated be-
havior that arises and at the same time admit a way to connect
analytic information to geometric. The person who first realized the
power of quasiconformal mappings in dynamical systems was D. Sul-
livan (1985), and it is now a standard tool. Actually, it is the main
new idea in the field.

Suppose f has a continuous first derivative, that is, f € C!. We
will use the standard notation dz = dx + idy, dZ = dz — idy and

fz :%(fm‘ify),
fo = 5(fa+ify)

If w = f(z), we also write
df =dw = f,dz + f5dz.
The Jacobian Jf of f is given by
Jr=f* = If=l*.

Thus f preserves orientation if and only if |fz| < |f.|- We are con-
cerned only with mappings that satisfy this condition.
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T arg u()
2 2

FIGURE 3. Ellipses to circles.

We define the dilatation p = py of f by

_ Iz
W=
The dilatation p is also called the Beltrami coefficient of f, and the
equation fz = pfz is the Beltrami equation. Note that lu| < 1if f
preserves orientation and that p = 0 if and only if f is conformal.
Since f is differentiable in D we can associate to f an infinitesimal
ellipse field in D by assigning to each z € D the ellipse that is
mapped to a circle by f. The argument of the major axis of this
‘nfinitesimal ellipse corresponding to f at z is 7/2 + arg(p)/2, and
the eccentricity is (1fs] — |f=)/(1f: +1fzD) = (1 = uD/ L+ IkD-

Motivated by these relations we associate to any p satisfying | pl <
1 an infinitesimal ellipse field, that is, a choice of direction and ec-
centricity at each point. The argument of the major axis is =,/2 +
arg(1)/2, and the eccentricity is (1 — |p|)/(1+ |pl)- Solving the Bel-
trami equation fz = puf; is then equivalent to finding f whose asso-
ciated ellipse field coincides with that of p.

A smooth map f is k-quasiconformal in D if its dilatation p sat-
isfies |u| < k < 1. For most applications we will have D = C, and
then we just say f is k-quasiconformal. Geometrically, the condition
means that there is a fixed bound on the stretching of f in any given
direction compared to any other direction. One clearly has

g1 (f(2)] = s (2)]-

In fact, the ellipse corresponding to F71 at f(z) is the rotate by 90°
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of the ellipse corresponding to f at z. If ¢ is conformal, then

boos (2) = ms(2),
reol2) = my(@(N T/ (2).

Note that postcomposing by a conformal map does not change .
This is just what we expect, since such a map does not alter which
ellipse gets mapped to a circle. On the other hand, precomposing by
a conformal map can change the direction but not the eccentricity
of such an ellipse, as expressed in the second equation above.

If f and g are smooth quasiconformal homeomorphisms of the
sphere C whose Beltrami coefficients coincide, then g = g o f for
some Mobius function ¢. Indeed go f~! maps infinitesimal circles to
infinitesimal circles, hence g o f~! is a conformal self-map of C.

Suppose f is k-quasiconformal and g is k’-quasiconformal, and set

K= k+1 K — K + 1'
k—1’ k' —1
Then the K" corresponding to f o g is at most K - K’ (since the
eccentricities of the ellipses at most multiply) and so f o g is k-
quasiconformal for some k" = k" (k, k').

6. Singular Integral Operators

We will make repeated use of the Cauchy—Green formula for a bounded
domain D and a smooth function f,

1) =5 e - //CZ ddn,  z€D,C=E+in

Let ¢ € L! have compact support and define

Ty(z) = / /C = did

The operator T is a convolution operator, whose kernel 1/z belongs
to L' on any bounded set. Consequently T'¢ is locally integrable.
From the formula one sees that Ty is analytic on any open set on
which ¢ = 0 and at oo, and (T'¢)(o0) = 0. Applying the Cauchy—
Green formula for a large disk to a test function ¥ € C°, we obtain
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the identity

[[ vty =~ [[ vs(©e(c)dsan

which means that

0
£T<P—90

in the sense of distributions.
For smooth ¢ with compact support we define the Beurling trans-
form S of ¢ by
Sp = (Tp) -

Thus S(f;) = f. whenever f is a smooth function which is analytic
at oo and vanishes there. By differentiating we see that Sy is given

formally by
_% // (C“’ECZ))ngdn.

This is a singular integral operator, and the integral diverges abso-
lutely. To make this rigorous we fix zo and define ¢(z) = Tp(z) —
¢(20)z. The Cauchy—Green formula yields

1 déd
zZ= - /] C—g_—nz‘ = Txr(2), 2| < R,

I{| <R

where yr is the characteristic function of the disk {lzs] <R} If Ris
chosen so large that ¢ = 0 off A(0, R), this implies for |20| < R and
h small that

EEELICI NN #(¢) = ol(z0)
h €

T
Il <R
Since 1, = S¢, we obtain in the limit as h — 0
1 — (2
Sp(z0) = —— // f(—o—ﬁ(g—())dﬁ dn.

J% 5 (¢ — 20)

In view of the identity

dédn

2 0,

a<|¢]<b
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we obtain an expression for S as a principal value integral,

i L (0
(Se)(2) = ;—»O . (¢ —2)?

e< ¢l <1/e

de dn.

The limit in this formula exists if ¢ is Holder continuous. The Beurl-
ing transform S is bounded in the usual L? norms 1 < p < co. More
precisely,

1Sz = llell2 ,
HS(‘P)HP = KpH‘PHpa 1 <p<oo,

A

where K, depends continuously on p, and in particular K, — 1
as p — 2. These estimates allow us to extend S to all of LP, for
1 < p < oo. The usual convolution argument with an approximate
identity shows that if a distribution f has distribution derivatives f,
and f; in LP for some 1 < p < oo, then (the extended) S satisfies
S(fz) = f.. A proof of these facts is included in Ahlfors’ exposi-
tion [A2] of quasiconformal mapping. For a detailed exposition of
singular integral operators, see [St].

7. The Beltrami Equation

Fix 0 < k < 1, and let L*(k, R) denote the measurable functions
on C bounded by k and supported in A(0, R). We let QC*(k, R)
denote the continuously differentiable homeomorphisms f of C such
that f; = uf, for some p € L*®(k, R), normalized so that f(z) =
z+ O(1/z) as z — oo. Note that f is analytic for |z| > R.

LEMMA 7.1. If f € QC'(k, R), then the inverse function f~1 belongs
to QC(k,4R).

Proof. This follows directly from the Koebe one-quarter theorem and
the formula for the Beltrami coefficient of f~! given in Section 5. O

Let f € QC'(k, R), and consider the Cauchy—Green formula for a
disk,

1 £, 1 £:(0)
1) =5 /|<|:r Pl //W ldgdn, [zl <
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For r > R the O(1/2) term does not contribute to the first integral.
We can replace f(¢) by ¢ in the first integral, and this leads to

__! 50 gedn = 7.
f(z)—z= 7r//KKRC_dedn—sz(z). (7.1)
Thus if we set g = f» — 1 and use fz = puf., we obtain

g = S(f:) = S(uf:) = S(ng) + S(k).

In terms of the operator
Uug) = S(pg), g€L?
this equation becomes
(I —Uu)g = S()-

The operator U, has LP-norm ||U||p < kKjp <1 for p > 2 sufficiently
close to 2. We fix p = p(k) > 2, once and for all, so that

kK, < 1.

Then ||U,|| < 1 and I — U, is invertible, with inverse

o0
I-u,)t = > UL
n=0
> 1
I1-U)7Y < kK" = ———.
NI-U)~ll < HEZ:O( p) T— kK,
Thus we can solve for g, to obtain
g=(I-U)'S(w € L". (7.2)
This leads to LP-estimates for g,

(WRZ‘)l/p

lallp < 11T = U IS ol < T

Since the Jacobian of f is given by

Jp =1L =157 = A= P
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Js belongs to LP/? on bounded sets. This has the following conse-
quence.

THEOREM 7.2. Let p = p(k) be as above. If f € QC'(k,R) and
E C A(0,R), then

area f(E) < C(areaE)"%/P
<

area F C(area f(E))'~2/P,
where C' depends only on k and R.

Proof. By Hoélder’s inequality applied with exponent p/2,

area f(E // Jrdzdy < (/ IfZIPd:rdy> /p(areaE)l_Q/p.

Since f, = g+ 1, the LP-estimate (7.3) for g gives the first estimate.
Lemma 7.1 permits us to apply the first estimate to f~!, and this
yields the second with a larger constant. O

We can also prove a uniform estimate on the modulus of continuity

of f.

THEOREM 7.3. Let p = p(k) be as above. If f € QC'(k,R), then
[f(z1) = f(z2)| < Clay — 2|27, |21, |20 < R,

where C' depends only on k and R.

Proof. We use the formula (7.1) and find

q 1/q
5= fea) <l a4 Al ] 2 e an)

where ¢ = p/(p— 1) is the conjugate index of p. We split the integral
into three pieces D1 = {|¢ — 21| < %[21 — 22|}, D2 = {|¢ — 22| <
3|21 — 22|}, and D3 = C\(D; U Dy). Since |¢ — zg| > |21 — 22|/2 on
Dy, the integral over D, is controlled by

dédn rdrdf 9_
< = clzy — q
// [ — 2] — ,// T4 cla1 2|

0<r <21 — 22|
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The integral over D is treated similarly. The integral over D3 is
controlled by

drdf
|21 — 22|? e = |21 — 2?79
r2q

|21 — z2| <7 <0

This yields our Holder estimate, since (2-q)/g=1-2/p. O

THEOREM 7.4. Fit0 <k <1, R>0, andp = p(k) > 2 as above.
For p € L*®(k,R), there is a function f on C, normalized so that
f(z) = z+0O(1/2) at oo, with distribution derivatives satisfying the
Beltrami equation fz = pfz, and such that fz and f, — 1 belong to
LP. Any such f is unique. The solution f is a homeomorphism of
C, which is analytic on any open set on which p=0.Ifp € C! and
p, € C1, then f € Cl.

Proof. The proof of existence is now easy. Define g € LP by (7.2),
and define

f(z) =2+ T(pg + 1)

Since T is a convolution operator with kernel 1/z locally in L' fis
continuous. Moreover, f is normalized at oo, and

fz = pgt+u
fo = 1+8S(ug+mp=1+g

in the sense of distributions, so f satisfies the Beltrami equation.
The defining formula for T shows that f is analytic on any open set
on which g = 0.

To prove the uniqueness, suppose F is another solution of the
Beltrami equation with Fz, F;—1 € LP. Then G = F,—1 satisfies G =
S(Fy). (We use here the fact that if h has distribution derivatives in
LP, then h, = S(hz).) As before we obtain G = (I — U,)~'S(w), so
G coincides with g, F, with f,, and F; with fz. Thus F = f +c, and
the normalization at oo gives ¢ = 0.

Now suppose p is smooth. Following [A2], to obtain the smooth-
ness of f we consider the differentiated Beltrami equation

(fl)f = N(fZ)z + szz .

If f were C! we could write ¢ = log f, and the equation would
become @z = jp; + fiz. Using the Cauchy—Green formula as before,
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applied to ¢ instead of f and using p(oc0) = 0, we obtain ¢ = T'(pz).
Consequently @, = S(pz) = S(uy:) + S(p:), and

(I =Up)pz = S(p2).

This is the same type of equation as we dealt with above.
We now wish to run this argument backwards. Define

Y=~ Uu)_ls(/iz) € L?,

which satisfies
¥ = S(uy) + S(u2)-
Define
¢ =T (W + ).
Since py + p, € LP is supported on A(0, R), the proof of Theorem

7.3 shows that ¢ is Holder continuous with exponent 1 — 2/p. The
distribution derivatives of ¢ are

Yz = /“ﬂ*’ﬂz,
0. = S(pp+p.) =1,

which belong to LP. Thus if h = e®, we are justified in calculating
the distribution derivatives of h to be h, = ey, and h; = efyp; =
e?(up, + pz) = hopp + hu, = (hp),. Hence hdz + (hu)dz is exact,
and

f(z) = /0 “hdz + (h)dz

is well-defined. Since ¢ (hence h) is continuous and p is C?, f is C*.
Moreover, we have f, = h and f; = hu, so f: = uf, as desired.
For |z| > R, ph = 0 so that f is analytic there. Since p(0c0) = 0,
h(z) =14+ O(1/z) at oo, and f(z) — z is analytic at co. Adding a
constant to f, we can arrange that f(z) = z + O(1/z) at oo. Also

Jp = (1= |u)Ih* = (1 - [ul*)e*] £ 0.

Thus f is locally one-to-one, and f is one-to-one near oo, so f is glob-
ally one-to-one, and f is a homeomorphism of the Riemann sphere
to itself. Thus f € QC!(k, R).

To complete the proof it suffices to show that f is a homeomor-
phism, even when y is not smooth. For this we approximate u point-
wise a.e. by smooth Beltrami coefficients p, € L*(k, R), with cor-
responding f, € QC(k, R). On account of the uniform Hélder es-
timates of Theorem 7.3, the sequence f, is equicontinuous, and we



24 1. Conformal and Quasiconformal Mappings

may assume f, converges uniformly to F on C. By Lemma 7.1 and
Theorem 7.3 the inverses f;, 1 are also equicontinuous, so ft con-
verges uniformly to an inverse for F, and F is a homeomorphism.

Let gn = (I — Uu,) '(S(un)) as before. Choose s > p so that
kK, < 1. Everything we have done works in L® as well as in L?, and
in particular (I — U,,) ! is defined and bounded on L*, so that gn
is bounded in L°. Since un — p a.e. (and since p, € L(k, R)), pn
converges in L" for all 7 < oo, and also pngn converges in L7 for all
r < s. Thus gn = S(ingn) + S(un) converges in LP, say to g. Since
fn — F uniformly, and (fn)z = gn+ 1, we see that F, =g+1in the
sense of distributions. Also (fn)z = kn(fr). converges to ug in LP,
so F; = pg in the sense of distributions. Thus F coincides with the
unique solution f of the Beltrami equation with LP derivatives, and
we are done. O

We let QC(k, R) denote the family of homeomorphisms f of C
that are normalized solutions of the Beltrami equation with Beltrami
coefficient u € L®(k, R) as in Theorem 7.4. The proof of Theorem
7.4 shows the following.

THEOREM 7.5. Suppose f, € QC(k, R) has Beltrami coefficient pin,
and f € QC(k, R) has Beltrami coefficient p. If pn — p a.€., then
fo — f uniformly, and (fn). — 1 and (fn)z converge respectively to
f.—1 and to fz in LP forp = p(k) as above. Furthermore the inverse
functions f, 1 converge uniformly to fL

Theorem 7.5 shows that f depends continuously on any continu-
ous parameters. We also have analytic dependence of f on analytic
parameters. ‘

THEOREM 7.6. Suppose that u(z,t) € L*(k, R) depends analytically
on one or several parameters t, for each fired z € C. Then the cor-
responding f(z,t) also depends analytically on t.

Proof. First note that if u(z,t) depends analytically on t for each
fixed z, then on account of the uniform bounds on  and the uniform
estimates provided by the Schwarz inequality, the functions move
analytically in the Banach space L with the parameter t. Since
the supports of u(z,t) are uniformly bounded, the functions u(z,t)
also move analytically in LP with ¢. Thus g = (I — U,)~1S(p) moves
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analytically in LP with ¢, and T'(ug+ p) moves analytically with ¢, in
the norm of uniform convergence on C. Hence f(z,t) = z+T(ug+u)
depends analytically on ¢t. O

We complete this chapter with some remarks.

The uniform estimates derived in Theorems 7.2 and 7.3 clearly
apply to f € QC(k,R) as do the computation rules for quasicon-
formal mappings and also Lemma 7.1. Also, we can assign to any
u € L*(k, R) a measurable ellipse field, and the arguments involv-
ing ellipse fields carry over to f € QC(k,R), as can be seen by
approximating pu by smooth Beltrami coefficients.

We have normalized our quasiconformal maps so they look like
z + O(1/z) near infinity. Given pu, the corresponding f is unique
up to compositions with Mobius transformations, so instead of this
normalization we could normalize by fixing any three points of the
sphere.

We do not have to restrict ourselves to functions which are holo-
morphic in {|z| > R}. By composing with a Mobius transformation,
it will always be enough to simply assume f is holomorphic in some
disk. Although this restriction can also be removed (see [A2]), in
our applications this condition will always be satisfied.

The way we will use quasiconformal mappings to study dynamical
systems is as follows. Suppose g is a smooth function with certain
dynamical behavior, and suppose we can construct an ellipse field
E that is invariant under g, corresponding to a measurable Bel-
trami coefficient p with |u| < k < 1. Let ¢ solve the corresponding
Beltrami equation, and set f = ¢ 0o go ¢~ !. Then f has the same
dynamical behavior as g, and moreover f is analytic. Indeed, o~
maps infinitesimal circles to E, g maps F to E, and ¢ then maps E
back to infinitesimal circles, so that f maps infinitesimal circles to
infinitesimal circles, and f is analytic.
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Fixed Points and Conjugations

The study of complex dynamical systems begins with the descrip-
tion of the local behavior near fixed points. We are concerned with
the existence of canonical coordinate systems at fixed points. The
coordinatizing functions play an important role, both locally and
globally.

1. Classification of Fixed Points

Suppose 2y is a fixed point of an analytic function f, that is, f(29) =
29. The number A\ = f/(z) is called the multiplier of f at zo. We
classify the fixed point according to A as follows:

Attracting : |A| < 1. (If A = 0 we refer to a superattracting fixed
point.)

Repelling : || > 1.
Rationally neutral : |A\| =1 and A™ =1 for some integer n.
Irrationally neutral : |A| = 1 but A" is never 1.

It will be convenient to denote the iterates of a function f by

f'=fand fr=frtof.
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Suppose 2o is an attracting fixed point for f. If |[A\| < p <1, then
|f(z)—20| < p|z—20| on some neighborhood of zg. Then |f™(2)—z20| <
p"|z — 20|, and consequently the iterates f™ converge uniformly to
2o on the neighborhood. We define the basin of attraction of z,
denoted by A(z), to consist of all z such that f"(z) is defined for all
n > 1 and f*(z) — zo. Thus for € > 0 small, A(z0) coincides with
the union of the backward iterates f~™(A(zo,¢€)), and consequently
A(zo) is open. The connected component of A(zp) containing zo is
called the immediate basin of attraction of zp and denoted by A*(20)-

We say that a function f : U — U is (conformally) conjugate to
a function g : V — V if there is a conformal map ¢ : U — V such
that g = ¢ o f o~ !, that is, such that

p(f(2)) = 9(#(2))- (1.1)

The maps f and g can be regarded as the same map viewed in
different coordinate systems. The definition implies the iterates bk
and g" are also conjugate, g" = po f"o o1, as are f~! and g~
when defined, g~} = p o f~! o p~1. Note that  maps fixed points
of f to fixed points of g, and the multipliers at the corresponding
fixed points are equal. A basin of attraction for f is mapped by a
conjugating map ¢ onto a basin of attraction for g.
Suppose we are given

f(z)=Zo+)\(z—z0)+a(z—zo)1’+...

with p > 2. Near zp the function f “looks like” g(¢) = X( in the
case A # 0, and like g(¢) = aC? in the case A =0, a # 0, where
¢ = z — 2o. Does there always exist a ¢ conjugating f to g7 It turns
out that the answer depends on f and in particular on the multiplier
\. We will show that a conjugation exists in the cases of attracting
and repelling fixed points. In the case of an irrationally neutral fixed
point, a conjugation exists unless A is “very close” to roots of unity.
In the case of a rationally neutral fixed point, a conjugation does not
exist in general, but a conjugation to another canonical form exists
in a large domain with the point as a cusp on its boundary.

If A # 0 and X is not a root of unity, then the conjugation ¢
is unique up to a scale factor. To prove this, it suffices to show
that any conjugation of f(z) = Az to itself is a constant multiple of
z. Suppose p(z) = a1z + asz% + --- is such a conjugation, so that
¢(Az) = Ap(2). Substituting power series and equating coefficients,
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we obtain a,\" = Aan, so that a, = 0 for n > 2, and o(z) = arz.
In the superattracting case A = 0, the same method shows that any
conjugation to (P is unique up to multiplication by a (p — 1)th root
of unity. The functional equation of a conjugation of 2P to itself is
¢(2P) = ¢(2)P, and comparing power series we find that o(z) = a12,
where af = a1.

When ) is an nth root of unity, any conformal map of the form
o(z) = zh(2") = biz + bny12" ! + -+ conjugates Az to itself. In
particular, the identity map z with multiplier A = 1 is conjugated to
itself by any conformal ¢. We must consider other normal forms.

The idea of conformal conjugation was introduced by E. Schroder
(1871) to study iteration of rational functions. Equation (1.1) and
its variants are referred to as Schrider’s equation. There was some
continuing interest in the iteration of rational functions in connec-
tion with algorithms for approximating roots, specifically Newton’s
method. Schroder was interested in finding effective methods for
computing iterates. Schroder (1870), and also A. Cayley (1879),
found the basins of attraction for Newton’s method applied to quad-
ratic polynomials (see the example to follow), and both mention the
cubic case as an interesting problem. (According to Douady (1986), it
was a question from a student in 1978 about the convergence of New-
ton’s method that initially aroused the interest of J. Hubbard, and
“by contamination” of Douady himself, in rational iteration theory.)
For color pictures of domains of attraction associated with Newton’s
method applied to certain cubic polynomials, see Maps 66, 77 and
78 on pages 91, 116 and 117 of [PeR].

Schroder emphasized how addition and multiplication formulae for
trigonometric and elliptic functions give rise to conjugations. For in-
stance, the double angle formula for tangent shows that z = —itan(
conjugates 2z/(1 + 22) to 2(. The double angle formula for cosine is
behind the following example.

ExAMPLE. The polynomial P(z) = 22 —2 has a superattracting fixed
point at co. Consider the conformal map h(¢) = ¢+ 1/¢ of {|¢| > 1}
onto C\[-2,2]. The identity P(h(¢)) = h(¢)* =2 = h(¢?) gives
h~1oPoh = (2 and P(z) is conjugate to ¢*. Thus the dynamics
of P(z) on C\[—2,2] are the same as those of ¢? on {|¢| > 1}. Since
the iterates of any ¢, |[¢| > 1, under ¢? tend to oo, so do the iterates
under P of any z € C\[-2,2]. Evidently [-2,2] is invariant under
P, so the basin of attraction of oo for P is A(c0) = C\[-2,2].
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ExaMPLE. The preceding example extends as follows. Let Th(z) =
cos(n arccos z) be the nth Tchebycheff polynomial, and set Fo(z) =
2T,,(z/2), which is monic. The coordinate change z = h(¢) = ¢+
1/¢ = €% + e ™ = 2cosw yields

F,(h(¢)) = 2 cos(narccos(z/2)) = 2 cos(nw) = h(¢")-
Thus h implements a conjugation of F,, and (™.

ExXAMPLE. Let S denote the unit square in the (-plane with corners
0,1,1+ 1,7 and let h be the conformal map taking S to the upper
half-plane, with 0,1,1 + ¢ being mapped to oo, —1,0 respectively.
Symmetry considerations show h maps ¢ to +1 and (1 +19)/2 to i.
We continue h by reflection to a meromorphic function on the whole
(-plane mapping unit-squares alternately to upper and lower half-
planes. Then h is doubly periodic, with periods 2 and 2¢ and with a
double pole at each period point. The function h(2¢) is also doubly
periodic, and by comparing poles and expansion at 0 one checks that

IR — A(EL£D/D) (WO + 1)
2RO M) = D(R(Q) +1) — 4h(O)(A()? = 0

Thus the rational function f(z) = (2* + 1)2/42(2% — 1) satisfies the
Schroder equation h(2¢) = f(h(¢)), and h implements a conjugation
of f(z) and multiplication by 2, at least where h is univalent. In
any event this makes the dynamic behavior of f transparent. In
particular, one sees that a point z is iterated by f to the repelling
fixed point of f at oo if and only if z = h(() for some dyadic point ¢ =
9=im + 2~ %ni. Note that h is not univalent at 0, and the multiplier
of f at oo is 4. The function h is the Weierstrass P-function. Several
other elliptic functions were treated by Schroder, and this specific
example was given by S. Lattes (1918).

h(2¢)

ExAMPLE. We apply Newton’s method (actually due in this form
in 1690 to J. Raphson) to a quadratic polynomial P(z) with simple
geros. We are iterating f(z) = z — P(z)/P'(z), which has superat-
tracting fixed points at the zeros of P(z) and a repelling fixed point
at co. The Mobius transformation ¢ = ¢(z) sending the two zeros
of P(2) to 0 and oo respectively, and oo to 1, conjugates f(z) to 2.
Since the midpoint of the line segment joining the zeros of P(z) is
mapped by f to co, the midpoint is sent by ¢ to the preimage —1 of
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+1. Thus the perpendicular bisector of the line segment joining the
zeros of P(z) is mapped by ¢ to the unit circle. We conclude that
the basins of attraction for Newton’s method are the respective open
half-planes on either side of the bisector.

2. Attracting Fixed Points

The easiest to treat are the attracting fixed points that are not super-
attracting. The following linearization theorem is due to G. Koenigs
(1884).

THEOREM 2.1. Suppose f has an attracting fized point at zy, with
multiplier X satisfying 0 < |A| < 1. Then there is a conformal map
¢ = ¢(2) of a neighborhood of 29 onto a neighborhood of 0 which
conjugates f(z) to the linear function g(¢) = M. The conjugating
function is unique, up to multiplication by a nonzero scale factor.

Proof. Suppose zy = 0. Define ¢,,(2) = A™"f"(2) = z+---. Then ¢,
satisfies
pnof =2 = Apni.
Thus if ¢, — ¢, then po f = Ap, so po fop~
conjugation.
To show convergence note that for 6 > 0 small

1= )¢ and ¢ is a

If(z) = Xz| < Cl2f*, |2 <6

Thus |f(2)| < [A||z] + C|z|2 < (|A] + C6)|z], and by induction with
A+ C6 < 1,

IR < A+ CO)M 2, 2] <6
We choose § > 0 so small that p = (|]A\|4+Cé)%/|A| < 1, and we obtain

n Z))— "z "z 2 " 2:2
lon+1(2) — wn(2)| = LU 2\)n+1/\f &) E Clyf\r|"(+1)| < |C/\|| |

for |z| < 6. Hence ¢n(z) converges uniformly for |z| < 8, and the
conjugation exists. The uniqueness assertion was already noted in
the preceding section. O
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The conjugation ¢ constructed above is normalized so that ¢'(z0) =
1. The uniform convergence shows that if f depends analytically on
a parameter, so does the (normalized) conjugation ¢.

The Schréder equation (1.1) satisfied by the conjugating function
© becomes

e(f(2)) = Ap(2)- (2.1)

This equation allows us to extend ¢ analytically to the entire basin of
attraction A(zo), by the formula ¢(z) = ¢(f"(2))/A", where n is cho-
sen large enough so that f"(z) belongs to a coordinate neighborhood
of zo. The extended ¢ is well-defined and satisfies the same functional
equation (2.1). Note that ¢(z) = 0 if and only if f™(z) = 2o for some
n > 1.

The branch of ¢! mapping 0 to zp can be continued until we meet
a critical point of f or leave the domain of f. If f is a polynomial,
or rational, then the range of ¢ covers the entire complex plane. The
Riemann surface of ¢! is a branched covering surface over C, on
which the action of f can be described as a multiplication by A and
a shift from one sheet to another.

EXAMPLE. Suppose f(2) is a finite Blaschke product of order d, with
a simple zero at z = 0:

z—aj

d

_ ibo
f(z)=e zjl;[2 .
The basin of attraction A(0) of the fixed point 0 is the open unit
disk A. The conjugating function ¢ is an infinite-to-one mapping
of A onto the complex plane C, whose zero set accumulates on all
of OA. The functional equation (2.1) for ¢ shows that the critical
points of ¢ are the critical points of f and all their inverse iterates.

3. Repelling Fixed Points

The existence of a conjugating map for a repelling fixed point follows
immediately from the attracting case. For suppose f(z) = 20+ Mz —
29) + - -+ where |[A| > 1. Then fY2) = 20+ (2 — 20)/X +--- has
an attracting fixed point at 29. Any map conjugating f ~1(2) to ¢/A
also conjugates f(z) to (.
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ExAMPLE. If P(z) is a polynomial with a repelling fixed point at
the origin, the corresponding map h = ¢! can be defined on the
entire plane by the functional equation h(A{) = P(h(()). It is an
entire function of finite order, and in fact it satisfies an estimate of
the form

logd
log|h(C)] < Co+C1l¢]",  T=—22 d=deg P,
log |A|
As a special case, the monomial 2™ has a repelling fixed point at
z = 1 with multiplier m. The coordinate change { = ¢(z) = log 2

conjugates z™ to m¢. The corresponding entire function is h(¢) = €C.

4. Superattracting Fixed Points

In the superattracting case the existence of a conjugation was first
proved by L.E. Boettcher (1904).

THEOREM 4.1. Suppose f has a superattracting fixed point at 2,
f(Z):ZO+ap(Z—ZO)p+"', ap7£0,p22-

Then there is a conformal map { = p(2) of a neighborhood of zy onto
a neighborhood of 0 which conjugates f(z) to (P. The conjugating
function is unique, up to multiplication by a (p — 1)th root of unity.

Proof. Suppose zyp = 0. For |z| small there is C' > 1 such that | f(z)| <
C|z[P. By induction, writing f**! = f" o f and using p > 2, we find
that

M < (Clz)P, 2l <6,

so f™(z) — 0 super-exponentially.

If we change variables by setting w = cz where ¢?~! = 1/a, then
we have conjugated f to the form f(w) = wP+- - -. Therefore we may
assume a, = 1. We wish to find a conjugating map ¢(z) = 2+ ---
such that ¢(f(z)) = ¢(z)P, which is equivalent to the condition that

@o fopt=(P. Let
on(D) = 1P = (P =

which is well defined in a neighborhood of the origin. The ¢, ’s satisfy

—n+1

pnrof= ("o fPT =k,
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so if pn, — ¢ then @ satisfies po f = P and so is a solution. To show
that {pn} converges, we write f*t! = f o f" and note that

P+l _ prof" p_":_. npp "
il ( = ) (1+0( "))

= 140 ™O("CP" ) =1+0(™)

if |z| < 1/C. Thus the product

IO—OISOH
n

n=1 ¥n

converges uniformly for |z| < ¢ < 1/C, and this implies {¢n} con-
verges. Hence ¢ exists. The uniqueness statement was noted in Sec-
tion 1. O

Again if f depends analytically on a parameter, then so does the
conjugation ¢ constructed above. In this case the functional equation
satisfied by the Boettcher coordinate function,

allows us to extend ¢ analytically only until we meet a critical point
of f. However, the functional equation

log |o(f(2))| = plog |¢(2)]

allows us to extend log|¢(2)| to the entire basin of attraction A(zp)
of z9. The extended function is a negative harmonic function, except
for logarithmic poles at all inverse iterates of zp.

Consider the case in which f is a p-sheeted cover of the immediate
basin of attraction A*(zo) onto itself. The only pole of log|¢(z)]
is now 2, and log|¢(2)| = log|z — 20| + O(1) at zo. Furthermore,
the functional equation shows that log|p(2)] — 0 as z — 0A*(20).
Except for sign, these are precisely the properties that characterize
Green’s function G(z, z9) for A*(z0) with pole at zo, and we obtain

log |p(2)] = =G(2,20), 2z € A"(20).

EXAMPLE. A polynomial P(z) = az? +--- with d > 2 and a # 0 has
a superattracting fixed point at co. Replacing 0 by oo in Boettcher’s
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theorem, we see that P(z) is conjugate to (¢ near co. The conjugating
map has the form ¢(z) = cz 4+ O(1), with a simple pole at co. Again
the functional equation

log[p(P(2))| = dlog|p(z)l, 2| > R,

allows us to extend log|p| to the entire basin of attraction A(oco)
of oo. The basin of attraction has no bounded components, by the
maximum principle, so that A(oo) = A*(o0) is connected. The ex-
tended log || is harmonic on A(c0), and log|p(z)] — 0 as z tends
to the boundary. This time

log |o(2)| = log |2| + log |c| + o(1), |z| — oo.

Now Green’s function for an exterior domain D with pole at oo is
characterized as the positive harmonic function on D which tends to
zero at OD (or at least at all regular boundary points of D), and
which has the form

G(z,00) = log |z| + 0 + o(1)

at 0o. The constant o appearing here is called Robin’s constant, and
the logarithmic capacity of D can be defined as e™?. (See [Ts].) In
the case at hand we see that log |p(2)| is Green’s function for A(oco)
with pole at oo, and log|c| is Robin’s constant. The logarithmic
capacity of dA(co) is 1/|c| = |a|~/(@=1).

5. Rationally Neutral Fixed Points

Suppose A" = 1 and f(z) = Az + azP™! + ..., a # 0. We consider
three cases:

1. A=1,p=1,
2. 20=1p>1,
3.A"=1, A#1.

CASE 1. We assume f(z) = z+az?+--- with a # 0. By conjugating
f by ¢(2) = az, we may assume a = 1. Let us next move 0 to oo
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by conjugating by the inversion z — —1/2. The conjugated map has
the expansion
b
g(z):z+1+;+~-' (5.1)

near co. We shall consider two methods for proving there is a map
¢ conjugating g to the translation z — z + 1. The first is due to
Fatou and uses the asymptotic behavior of g”. The second involves

quasiconformal mappings.
First observe that if Cp > 0 is sufficiently large, then the half-plane

{Rez > Co} is invariant under g, and

Reg"(z)>Rez+g—, Rez > Cy,n > 1.
This is proved easily by induction, as is the upper bound in
—g <19"(2)| < |2 + 2n, Rez > Cp, n > 1.

These estimates are valid whenever g(z) = z+ 1 4 o(1), and they

will be used later.
In the first method we define ¢, by

on(z) = g"(2) —n —blogn, Rez > Cp.

From b )
L) — oF(2 1
#41) = ) +1+ 5 +0(3)

we obtain

b 1 1
prnr(2) — pr(2) = Hlog k —log(k+ D] + s + ()= o(3):
where the estimates are all independent of z. It follows that

n—1
lon(2) — 2 < |p1(2) = 2| + D [rr1(2) — pr(2)| = O(logn)
k=1

for Re z > Cy. Now to prove that ¢, (z) converges, we estimate

oni1(2) —pn(z) = blogn —blog(n+1)+¢""(2) — g"(2) — 1
L. +0(i)
on g'(2) n?
1 1 1
— b _ 2 2
[n+blogn+gpn(z) n}+0(n2)

b 1 lo
= ﬁ0(|blogn+cpn(z)|> +O(ﬁ) = O< ngzn

)
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FIGURE 1. Parabolic attracting regions at oo and at 0.

Hence Y |@n+1(2) — ¢n(2)] < 00, and ¢y, converges, say to ¢. Since
the ¢,’s are univalent, so is . From the definition, ¢,(g(2)) =
Ynt1(z) + 1+ blog(1 + 1/n). Hence g o g = ¢ + 1, and ¢ conju-
gates g to the translation z — z + 1.

Using the functional equation ¢(g(z)) = ¢(z)+ 1, we can continue
¢ analytically to any domain 2 on which g is defined and satis-
fies g(Q?) C Q and Reg"(z) — 400, z € . For instance, from the
asymptotic form of g at co we see that for any 6 > 0 we can choose
Cjs so large that Q = {|y| > —6z + Cs} U {z > Co}, the union of
three half-spaces, is invariant under g, and g on (2 is conjugate to
translation.

With some more effort we can construct an invariant domain €2
with smooth boundary so that the part of € in the half-plane z <
—2 consists of the domain above the curve y = C'log|z| and the
symmetric domain below the curve y = —C'log |z|, where C' > 0 is
appropriately large, as at the left of Figure 1. Indeed, from g(z) =
u+iv = z+1+iy+O(1/|z]), we obtain for z on the upper boundary
curve that

1 1
log |u| = log |z| — 2l + (’)(W>,
so that
A A
— =Clog|z| — —
2| 2|

Clog\u\+ +(9( ) > C'log |u|

v Y-

IV
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for C large enough. If we connect the two logarithm curves as in
Figure 1, we have an invariant €2, on which g is conjugate to trans-
lation. A similar estimate in the right half-plane shows that for C
sufficiently large and any ¢ > 0 the domain €2 defined by z > Cp
and |y| < Clogz + ¢ is invariant under g. Note that the ;’s fill out
the half-plane & > Cy. Thus for any C; > C the domain Q* defined
by z > Cp and |y| < Cilogz is invariant under g, and moreover it
captures eventually the forward orbit of every point in the half-plane
xz > Cy.

The inversion z — —1/z carries Q to the cardioid-shaped region
pictured at the right of Figure 1, which we refer to loosely as the at-
tracting petal for the fixed point. Inside the attracting petal f is con-
jugate to z — z/(1—z). At the cusp the boundary curves are tangent
to the positive real axis. In fact, the images of the logarithm curves
defined above have the form y = +Cz?log(1/z) + O(y?) as © — 0+
The iterates of any point in the cardioid tend to 0 in a direction tan-
gent to the negative real axis. Furthermore they all eventually enter
and approach 0 through the image of 2*, which forms a narrow cor-
ridor bounded by curves of the form y = £Ciz*log(1/]x]) + O(y?)
asz — 0—.

We now describe the second method for dealing with this case. As
before, assume g is given by (5.1), and let V = {Rez > A} be a
half-plane such that g(V') C V. Let L be the vertical line bounding
V. Then L' = g(L) is a smooth curve which is approximately the
translation of L by 1 to the right. Let S denote the vertical strip
in the z-plane bounded by L and L'. In the { = £ + in plane, let
¥ be the honest strip {0 < ¢ < 1}. We construct a diffeomorphism
h:% — S by setting h(in) = A+ in and h(1 +in) = g(A +in) and
then filling in these boundary values in a smooth way, uniformly as
Im ( — Foo. For technical reasons, let h be conformal on some disk
in X.

We now extend h(¢) to a diffeomorphism of the right half-plane
onto V by iterating the formula h(¢ 4+ 1) = g(h(¢)). The analyticity
of g guarantees that the ellipse field (Beltrami coefficient) p of h is
invariant under translation by 1, (¢ + 1) = p(¢). Extend p to the
whole (-plane to be periodic. Then p is smooth except at oo, and
|u| < k < 1. Also, = 0 on open sets where h is analytic.

Solve the Beltrami equation ¢z = ut, so that v fixes the points
0, 1, co. The ellipse field corresponding to p is invariant under the
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translation function G(¢) = ¢+ 1. Hence ¢y =¢oGo 1 is confor-
mal everywhere, as is seen by considering its action on infinitesimal
circles. Thus it is Mdbius, and since v fixes oo and takes 0 to 1 it
must be of the form ¥1(z) = az+ 1. So ¥ must satisfy the functional

equation (¢ + 1) = ay(¢) + 1.
Define ¢ = 9o h~! on V. Then ¢(z) is analytic on V and satisfies

pog=voh log=yoGoh ' =a@oh™)+1=ap+1

We claim that a = 1, and for this we check the stretching of ¢
at oo. Note that h~! can be extended from V to to a quasiconfor-
mal homeomorphism of C, so that ¢ is the restriction to V' of a
quasiconformal homeomorphism of C. The Holder condition of The-
orem 1.7.3, applied to 1/¢(1/z), then yields an estimate of the form
lo(g™(2))| < Clg™(2)|* for some fixed 0 < o < 1, which is ~ n®. On
the other hand, if @ # 1 then

0(g"(2)) = a"p(z) 0"+ +a+l=a"p(z) + (" = 1)/(a - 1).

Since ¢(g™(z)) — oo, we have |a] > 1, and then lo(g™(2))| ~ |a|™,
which grows faster that n® We conclude that a = 1, and ¢ is the
desired conjugation.

CASE 2. Suppose now that 2/ = f(z) = z + azPt! 4 --- with a # 0
and p > 1. As before we may assume a = 1. Define z = ¢1/P and
Z = C’l/p for 0 < arg ¢, arg ¢’ < 2w and 2,2 restricted to an
appropriate sector of aperture 27 /p. Then

¢ = ¢ +p¢? + O(¢FHP).

We renormalize again to remove the p and then change variables by
¢ =—1/z and ¢’ = —1/2'. This gives

Z=g(z) =z +1+0(2[ 7).

The first method in Case 1 can be used here again, but it becomes
much more complicated since not only logn enters but also other
terms involving n¥/? for 1 < k < p. On the other hand, the second
method involving quasiconformal maps goes through in this case
without change. Moreover, the discussion of the invariant domain Q
remains intact, except that now the invariant 2 is bounded by the
curves y = +C|z|'~1/P in some half-space z < —M.
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FIGURE 2. Pattern of attracting petals for z + 2% and —z + z*.

Another proof covering Case 2 proceeds as follows. First we kill off
one by one the higher order Taylor coefficients of f(2) = z + P4
ap+gzp+2 + --- by conjugations of the form z — z + azk. Only the
coefficient of 22P*! refuses to die, and we obtain for any arbitrarily
large prescribed g a conjugation of f(z) to

F(z) = z + 2P + A2 1+ O(|2]9).

The coefficient A is actually a conformal conjugation invariant, though
not the only one (see [Vo]). If now we fix ¢ > 2p+1, then the method
used in Case 1 applied to F(z) converges to the desired conjugation.
(We mention as another approach the proof in [Mi2], in which a cou-
ple of preliminary smoothings near oo lead to rapid convergence. )

The picture is as follows. Instead of having a single attracting
petal, there are now p attracting petals, each within a sector of aper-
ture 27/p, as in Figure 2. The angles of the boundary rays of the
sectors are given in terms of the coefficient a of 2Pt by

arg a 27k
ga  2rk
p p

O = —

0<k<p-1

These are called the repelling directions. They are exactly the angles
for which |1+azP| is the largest, that is, for which f(2) = z(1+az”)+
O(|2P*2|) expands the most. The gap between two consecutive petals
is contained in a cusp bounded by curves with |6 — 0| ~ |z|1H1/P.
The directions for which |1 + azP| is smallest are given by 0} = 6x +
7/p, and these are called the attracting directions. The rays in these
directions bisect the petals. Each petal is invariant under f, and the
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iterates of a point in the petal approach the fixed point 0 eventually
through a corridor bounded by curves with |6 — 8}| ~ |2|'*1/P. The
symmetry of the conditions is easy to explain. Replacing f(z) =
z+azPtl+. .. by f(z) = z—azPt! —- .- has the effect of running the
flow backward, interchanging attracting and repelling directions.

CASE 3. Finally assume f(z) = Az + ---, where ) is a primitive
nth root of unity. Then f"(z) must belong to either Case 1 or 2.
Let Pi,..., Py be the petals for f*. Then f(F;) essentially coincides
with P; for some j, and f permutes the petals in cycles of length n.
Thus p = k - n for some integer k, and n divides p. In particular, if
f*(2) = 2+ amz™ + - - - where a;, # 0, then m = kn + 1 for some
integer k, and the number of petals is p = m — 1. This is a purely
algebraic fact, which is not so easy to prove directly.

EXAMPLE. If f(2) = —z+ 2%, then f?(2) = 2— 427 +6210— 6213+ 216,
so there are six petals and f interchanges opposing petals. One can
check that the perturbed map —z + 2* + €2% has fewer petals.

6. Irrationally Neutral Fixed Points

Now let A = e2™ where 6 is irrational. We want a solution ¢ of the
Schroder equation ¢(f(z)) = A¢(z), normalized by ¢'(0) = 1. For
h = ¢~ this becomes

f(W(Q) =h(X),  H(0)=1 (6.1)
We begin our discussion with a simple observation.

THEOREM 6.1. A solution h to the Schrioder equation (6.1) in any
disk {|¢| < r} is univalent.

Proof. Suppose h(¢1) = h(Cz2). Then h(A"(1) = h(A"C2) for all n > 0.
But {A\"} is dense in the unit circle so h(¢1€?) = h((2€%) for every
6. This implies h((1z) = h((2z) for |z| < 1, and since h'(0) = 1,
G =G0

THEOREM 6.2. A solution h to the Schrider equation (6.1) exists

if and only if the sequence of iterates { f"} is uniformly bounded in
some neighborhood of the origin.
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Proof. If h exists then f"(z) = h(A\"h~1(2)) is obviously bounded.
On the other hand, if |f*| < M for all n, then we can define

n—1
pulz) = = SN F(2)
0

Then {p,} is a uniformly bounded sequence of analytic functions,
so contains a convergent subsequence. Since @n 0 f = Apn + O(1 /n),
any limit of the @,’s satisfies ¢ o f = Ap. From A = f'(0) we have
¢ (0) =1, and ¢'(0) = 1. Thus h = ¢~ is a solution to (6.1). O

One immediate consequence of Theorem 6.2, which is not so easy
to see directly, is that if f is topologically conjugate to Az near 0,
then it is conformally conjugate. Indeed, if there is a topological
mapping h, h(0) = 0, such that h~1o foh = A, then for § > 0 small
the images of the disks A(0, §) under h are invariant under f, so the
iterates of f are uniformly bounded on a neighborhood of 0.

THEOREM 6.3. There exists a A = €™ so that the Schrider equation
(6.1) has no solution for any polynomial f.

Proof. Let f(2) = 24 4 ... + )z, and suppose there is a conjugation
h defined on A(0, §). Consider the d” fixed points of f", that is, the
roots of

fr2)—z=2+- + (A" =1)z=0.

One root is 0. Label the others zi,...,z4n—1 and note that since
f™(z) = h(A"h~!(z)) has only one zero in A(0,6), zj & A(0,6) for
j=1,...,d" —1. Thus

87 < ITlzl =11 =A%,

We now construct a ) for which this is impossible, thus contradicting
the existence of h. Suppose g1 < g2 < --- is an increasing sequence
of integers, and set # = 332, 27% and X = exp(2mit)). Then

‘1 _ )\2q’“| ~ 99k k41
Taking logarithms, we find that

ger1 < C(6)d*™.
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If we define inductively gi’s to grow very rapidly, say with log qx41 >
k29 this inequality is violated for any d and § > 0. O

An example as above was first given in 1917 by G.A. Pfeifer. The
work was continued by H. Cremer, who proved in 1938 that if |\| = 1
and liminf |\" — 1|1/™ = 0, then there is an analytic function f(z) =
Az + --- such that the Schréder equation (6.1) has no solution. In
a seminal paper in 1942, C.L. Siegel gave the first example of a
unimodular A for which (6.1) is solvable.

A real number 6 is Diophantine if it is badly approximable by
rational numbers, in the sense that there exist ¢ > 0 and p < 0o so
that

’9 - 1-" > (6.2)
q q*
for all integers p and g, ¢ # 0. This occurs if and only if A = 2™
satisfies
A" — 1] > cenl™H, n>1.

For fixed u > 2, the condition (6.2) holds for a.e. real number 6.
Indeed, if E is the set of # € [0, 1] such that |§ —p/q| < ¢~* infinitely
often, then the measure of E is estimated in the obvious way by

|E|<) 2-¢* g=0n**) —0.
q=n

In particular, almost all real numbers are Diophantine. By a theorem
of J. Liouville [HaW], any algebraic surd 6 of degree m satisfies (6.2)
for p > m.

THEOREM 6.4 (Siegel). If 6 is Diophantine, and if f has fized point
at 0 with multiplier e*™ | then there exists a solution to the Schréder

equation (6.1), that is, f can be conjugated near 0 to multiplication
by 627\'1‘6'

Proof. We want to solve h(Az) = f(h(2)). If we define f and h by
f(2) = Az + f(z) and h(z) = z + h(z), then the equation can be
written

h(Az) — Ah(z) = f(h(2)). (6.3)

Siegel’s original method was to expand both sides in power series
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using
o0 [e o]
h(z) = Z anz", f(z) = Z by 2"
n=2 n=2

to inductively obtain equations of the form an (A" — ) = An(az, -,
@p_1,b2, - bp), n > 2. Using |A\" — A[ > enl™* he was able to
estimate the a,’s and prove the power series converges. This is not
easy. We take a different route, following the proof in [SiM].

We shall use KAM theory (A.N. Kolmogorov, V.I. Arnold, J.
Moser) in a simple case. We consider coordinate changes 1 around
z = 0, normalized so that ¥(z) = z + P(z), where 9(z) = O(2%).
Instead of finding a solution to (6.1) right away, we build a ¢ so that

Yo foyp=g(z) = Az +§(2), (6.4)

where § is smaller than f is some sense. (Note that § = 0 solves the
problem.) We then repeat the procedure with f replaced by g and ¥
defined on a slightly smaller disk. Careful estimates show we obtain
the desired h in the limit on a disk of positive radius.

So suppose f(z) is as above. The idea is to replace (6.3) by its
linear version, by replacing h in the right-hand side by z,

P(Az) = Xp(2) = f(2). (6.5)
This can easily be solved for ¥,
-
¢(z) - ]2:; N — /\Z],

and our hope is that the corresponding § defined by (6.4) is smaller
than f. We estimate § and §’ using the assumptions
nt
< on—
ECES T

If'(z)] <6 in A(O,r).

We have two parameters 6,7 and want to find the corresponding
values for g = ¢! o f o 9. First we estimate ¥ in a slightly smaller
disk A(0,r(1—n)) for some 0 < n < 1/5. From the Cauchy estimates
for the power series coefficients of f’ , we have

1)

|bj| < T
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and so for z € A(0, (1 — n)r), we have

1 b .

Z'/\J 7'] 1 —n)’ l< HZJ“(l—n)] !
Jj=2

- )

E:J+1 J+u—nu—m11=;;a

If we also assume coé < 7**2 then we have [¢)’| < 7 in this disk.

Clearly |¢'| < n implies that ) maps A(0,7(1—4n)) into A(0,r(1—
3n)). Furthermore v takes every value in A(0,7(1 — 2n)) precisely
once in A(0,7(1 — n)), in view of the argument principle and the
observation that |¢(z)] > r(1 — 2n) for z € JA(0,r(1 — 1)) and
¥(z) = 0 only at 0 in this disk. Now consider how g = ¢y 1o fo 1
maps A(0,7(1 — 4n)). First ¢ takes this disk into A(0,7(1 — 3n)),
then f takes this to A(0,7(1 — 2n)) if § < 7, and finally ¢! takes
A(0,7(1—2n)) into A(0,7(1 —n)). Thus g maps A(0, (1 —4n)) into
A(0,7(1 —n)).

We now estimate §. From (6.4) we have

9(2) + Pz +9) = Mp(2) + f(z + D),
and using (6.5) we obtain
9(2) = ¥(A2) = Az + ) + f(z +¥) — f(2).

We wish to estimate g in A(0,7(1 —4n)). Let C be the maximum of
|g| in this disk. Then

o ; h 7 )
CﬁsuplwI-Ca+sup|f(2+¢)—f(Z)lSn0+6-n—?ﬁ

Solving for C gives

cob?r 1
< 11
I
so by Cauchy’s estimate
N 60(527“ 1
'gl| < nu+2 m, Z € A(O,T‘(l — 57]))

Note in particular that the § in the estimate for f’ has become a §2
in the estimate for ¢’. This improvement is what allows the iteration
to work.
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Consider what we have done. We have taken an f satisfying I <
& in A(0,r) and replaced it by a g satisfying 16| < co8?rn~ W2 (1 -
7)~! in A(0,7(1 — 5n)). To do this, we needed to assume 7 < o,
where f is defined on A(0,70), and also

0<n<1/5 cob<n*t? &<

If we take ¢; > 0 small enough and require n < ci, then the first
condition is satisfied, and the third condition follows from the second.

Suppose now 17, 8o have been chosen to satisfy these conditions.
Define sequences

Tn+l = (1 — 51n),
Ttl = Tn/2,
bnt1 = cﬂtggng(uﬁ)g—(uﬂ)‘

The required condition cpb, < nk+? is now easy to verify by induc-
tion. If it holds for n, then

- 0(2)527];(#4—2)2—(#%) < 77721“+477;(“+2)2_(”+2) pt+2

606n+1 = Th+1»

and it holds for n+1. We have also inductively constructed sequences
{1n} and {gn} with go = f and gn = Y71 0 gn—1 0¥, or equivalently

g":wglOiﬁ;—llO-“Owl_lofo?/)lol/)zO--'own.

If R = 7o [1(1 —51n) > 0, then |gy| < 6nrn/(1=1n5) — 0 0on A(0, R),
$0 gn — Az on the disk. Thus {¢10---0 1} converges to a mapping
h which conjugates f to Az, as desired. O

For quadratic polynomials P(z) = e2m0, + 22 precise conditions
are known for the existence of a conjugation. Such exists if and only
if

> log gn+1
5 lognn _ o
an

n=1
where {pn/gn} is the sequence of rational approximations to 6 com-
ing from its continued fraction expansion. The sufficiency of this
condition was proved by A.D. Brjuno (1965), and the necessity was
established by J.-C. Yoccoz (1988). In Section V.1 we give an ele-
mentary proof, due to Yoccoz, of the existence of the conjugation for
almost all 6.
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7. Homeomorphisms of the Circle

Any orientation preserving homeomorphism f of the unit circle can
be expressed in the form f(t) = €*™F(®) where F is an increasing
homeomorphism of the real line R that satisfies F((t+1) = F(t) + 1.
The lift F of f is unique up to adding an integer. We wish to assign
a rotation number to f, which will measure the average advance of
F over an interval of length 1, that is, the average speed of F.

LEMMA 7.1. Let F be as above, and suppose F(0) > 0. Fizp > 1. If
m = m(p) is the first integer such that F™(0) > p, then
£7(0) F(0)

1+F
P < liminf < limsup §£+—+—@.
m n—oo n n—o00 n m m

Proof. 1If 0 < t < 1, then F(0) < F(t) < F(0)+1.If s > 0 is arbitrary,
and j is the integral part of s, then s+ F(0)—1 < j+ F(0) = F(j) <
F(s) < F(j+1) = F(0)+j+1 < s+ F(0)+1. We check by induction
that

s+ k(F(0)-1)
Fk(m—l)(o)

F¥(s) <s+k(F(0)+1), s>0,k>1,

<
< kp < FF™(0), k>1.

Write n = km + q where 0 < ¢ < m. Then kp + ¢(F(0) — 1) <
Fi(kp) < FI(F*™(0)) = F7(0) = FI**(FHm=1(0)) < Fi™*(kp) <
kp + (¢ + k)(1 + F(0)). This gives
_ n
kp  a(F(0)—1) F'0) kp k+q

. s =< = (1 F(0)

Since k/n — 1/m and ¢/n — 0 as n — oo, the lemma follows. O

There is a similar estimate if F'(0) < 0. It follows from the estimate
that

a(F) = lim F(0)

n—0o00 n

exists. We call a(F’) the rotation number of F'. We define the rotation
number a(f) of f to be the residue class of a(F') modulo 1. This is
independent of the lift F'.

One checks that the translation ¢ — ¢t + 6 has rotation number 6,
so the rotation f5(¢) = €2™( has rotation number 6 (mod 1). From
the estimates in the lemma it is clear that the rotation number of
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F depends continuously on any parameters on which F depends
continuously, as does the rotation number of f.

We have F™(t)/n — a(F) for any real number ¢. This follows from
the periodicity modulo 1 of F' and the estimate F’ n(0) < F™(t) <
FP0)+1for0<t<1

If Ft) > t+a+efor0 <t < 1, then F™(0) > n(ao + g),
and a(F) > ag + ¢. Similarly, if FI(t) <t+ao—¢€ for 0 <t <1,
then a(F) < ag — €. It follows that F(t) —t assumes the value a(F)
somewhere on the interval 0 <t < 1.1In particular, if a(F) =0, then
there is a fixed point for F. Conversely, if F' has a fixed point %o,
then a(F) = lim F"(to)/n = 0. Similarly, f has a fixed point if and
only if a(f) = 0, and since a(f") = na(f), f has a periodic point if
and only if a(f) is rational.

In general, a( FoG) # a(F)+a(G). Nevertheless, a(F) is invariant
under conjugation. Indeed, suppose ® satisfies the same conditions as
F. If k(n) is the integral part of F"(0), then ®(F™(0)) = ®(F*(0) -
k(n)) + k(n), and

a(®PoFo @“1) = lim (PoFo 31" (2(0)) — lim ®(F™(0))

_ )
= lme—a(F).

Thus a(f) is also invariant under conjugation.

Rotation numbers were first introduced by H. Poincaré (1885) in
connection with ordinary differential equations. A. Denjoy (1932)
showed that if f has irrational rotation number and f’ has bounded
variation, then f is conjugate to the corresponding irrational rota-
tion. V.I. Arnold (1961) showed that if f is analytic with Diophantine
rotation number a(f), and if f is a small perturbation of a rotation,
then the conjugating map can be taken to be analytic in a neigh-
borhood of the circle. Arnold conjectured the global version of his
theorem (no restriction on being close to a rotation). Arnold’s con-
jecture was proved for a large class of Diophantine numbers by M.
Herman (1979), and extended to cover all Diophantine numbers by
Yoccoz (1984). We give a proof of Arnold’s theorem (which came to
us through a lecture of T. Kuusalo), since it is very similar to that
of Theorem 6.4, and since we will use the theorem later.

THEOREM 7.2 (Arnold). Let a be Diophantine, and let o > 1. Then
there is € > 0 such that if f is any homeomorphism of the circle
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with rotation number a(f) = a, which extends to be analytic and
univalent on the annulus {1/0 < |w| < o} and satisfies |f(w) —
e?™%y| < ¢ there, then f is conformally conjugate to the rotation
e?™y on the annulus {1/1/o < |w| < /o}.

Proof. It will be convenient to work with the lifts of functions to a
strip rather than functions on an annulus. Let S, be the horizontal
strip {z + iy : |y| < p}. For g(z) defined on S, let ||g||, denote the
supremum of |g(z)| over S,. Replacing f by its lift, we assume f(z)
is analytic on S, and satisfies f(z + 1) = f(2) + 1. We may assume
that f(z) is increasing on R. Write f(z) = z + o + f(z). Then f is
periodic and has a Laurent expansion

~+00
f(Z) — Z bn627rinz’ e—27rp < |e2m'zl < e27rp‘

n=—0oo

We wish to find a univalent function h on S,/ that satisfies h~lo
foh(z) = z+a, that is, h(z + a) — h(z) = a + f(h(z)). As before,
we consider the linearized version

Y(z+a) = 9(z) = a + f(2). (7.1)

In Theorem 6.4 the multiplier was just the coefficient of z in the
series expansion, the term corresponding to a + by here. To simplify
matters we assume for the moment that by = 0, that is, the constant
term of f is just the rotation number. The linearized equation is then
solved by ¥(z) = z + 9(2), where

n bn 2mwinz 271
z,b(z)zZ—)\n_le nz, A =e™M
n#0

We assume that

<cln[*7t, n#O.

[Am =1

From the Cauchy estimates for the Laurent series coefficients of f

we have )
bl < ||| e~ 2mImle.

Summing the series gives a constant C'; depending only on ¢y and p
such that R R
¥l < Cillfllpe™, 0<o<l (7.2)
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Now suppose bp is arbitrary. Let fo(z) = f (2) — bo and suppose
Yo(z) = z + 1o(z) is the function for z + a + fo(z) obtained by the
above procedure. Then 1o and fo satisfy (7.1), so that

~

do(z + ) — dho(2) = f(2) ~ bo. (7.3)
Since |bo| < [|f]l,, we have ||foll, < 2 fll, and so (7.2) holds for Yo
providing C; is doubled.

We start now with f satisfying || £l p < 6.Let0 <n<5p. As before
we see that if § < n and & < n#*1/Cy, then 9o(Sp-an) C Sp-3n>
F(8p-3y) C Sp—2n, and $o(Sp—n) D Sp-21, 80 that

g(z) =g to fo(z) =z +a+g(2)

is defined on S,_4; and has range in S,—n. Also, gl p—an < 3m. We
wish to obtain an estimate of the form ||g||p—an < Co6%n~#~1. The
proof is then completed as before by iterating, with 62 providing the
margin of victory.

Equating the expressions

Yo(9(2)) = g(z)+?/30(g(zﬂ))=2
Ffo(z)) = wo(2)+a+ f(¥o(2)

we find using (7.3) that

+a+§(2) +dolz + o+ §(2)),
) = z 4+ o(2) + @+ f(z + Po(2)),

§(2) = [f(z + 90(2)) — f(2)] = [o(z + @+ §(2)) — do(z + @)] + bo-

Since « is also the rotation number of g, g(z) is equal to z + a for
some z, so that §(z) = 0 for some x € R. Thus by is estimated by
the terms in square brackets, and it suffices to estimate these. From
the Schwarz inequality and (7.2) we obtain

. n N 26, - e
|f(z +o(2)) = f(2)] < ;H%Hp—m <G8’y 7h L
Set C = ||§||p—4n- Then C' < 3n and
) A R _C o
[o(z + o+ §(2)) — oz + )| < 2C16n ”g;) < Cion #°C.

Hence C < 2[C26%n#~1 + C16n #"1C]. If § < n**t1/(4C1), we can
solve for C as before and get the desired estimate.
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For the iteration procedure the essential condition on § has the
form 6 < c;n**1. We choose 1, = p/2"*2, pp = p—4(m+- - -+ 1n—1),
and 6, = 6/%.
and a, and f with | f|| » < 61, we obtain a sequence of conjugations
{¢n} on S,, and a sequence g, =¥l o...0p o forho... 00,
By induction the corresponding g,’s satisfy ||gn||, < 6n. Then g,
converges uniformly to z +a on §, /2, and 1 o - - - 0 1, converges on
S,/2 to a univalent mapping h which conjugates f to translation by
a. O

Then for é; sufficiently small, depending only on p
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Basic Rational Iteration

We consider a rational mapping R(z) and use it to partition the
sphere into two disjoint invariant sets, on one of which R(z) is well-
behaved (the Fatou set), on the other of which R(z) has chaotic
behavior (the Julia set). The first milestone of the theory is a theorem
of Fatou and Julia that the repelling periodic points are dense in the
Julia set. From this follows the homogeneous nature of the Julia set.
In the words of Julia, “la structure de E' est la méme dans toutes
ses parties.”

1. The Julia Set

Let R(z) be rational, and assume always that R has degree d > 2.
Thus R = P/Q where P, @ are polynomials with no common factors
and d = max(deg P,deg@) > 2. Then R(z) is a d-fold branched
covering of the Riemann sphere, and in fact every d-to-1 conformal,
branched covering of C comes from some such R. We define the
iterates of R as before, R? = Ro R, R® = R"! o R and note that
R™ has degree d™.

Given zg, the sequence of points {z,} defined by 2z, = R(zp—1)
is called the (forward) orbit of zy3. The chain rule gives the useful
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identity
(R"Y'(20) = R'(20)R'(21) -+ R (zn-1).

The point zo is called periodic if 2, = zo for some n. This occurs if
and only if zo is a fixed point for R". The minimal n is its period.
The orbit {21, 22,...y2n = zo} is called a cycle. We classify the cy-
cle as attracting, repelling, rationally neutral or irrationally neutral
according to the type of fixed point for R™. Thus for instance the
cycle is attracting if and only if [] |R'(2;)] < 1, and this does not
depend on the choice of point in the cycle. The point zg is called
preperiodic if zj is periodic for some k > 0, and strictly preperiodic
if it is preperiodic but not periodic.

Recall that a critical point of R is a point on the sphere where R
is not locally one-to-one. These consist of solutions of R'(z) =0 and
of poles of R of order two or higher. The images of the critical points
are the critical values of R. The order of a critical point z is the
integer m such that R is (m+1)-to-1 in a punctured neighborhood
of z. If z is not a pole this is its multiplicity as a zero of R'. There
are 2d — 2 critical points, counting multiplicity. One way to see this
is to compose R with a Mobius transformation, to reduce to the case
where 0o is neither a critical point nor a critical value, and R(o0) = 0.
Then
P(z) azd 1+
Q) Bt

where a, 3 # 0, and so

R - QIPC) =~ PEQE) _ —aB?t
Q(2)? Qx)?

The Fatou set F of R is defined to be the set of points 20 € C
such that {R"} is a normal family in some neighborhood of zg. The
Julia set J is the complement of the Fatou set. Thus 2o € F if and
only if the family {R"} is equicontinuous on some neighborhood of
20, with respect to the spherical metric of C. Evidently the Fatou
set is an open subset of C, and the Julia set is compact.

If R has an attracting fixed point 2o, then the basin of attraction
A(zp) is contained in the Fatou set. On the other hand, since the
iterates of R converge to zp on A(zg) but not on its complement,
the iterates cannot be normal on any open set meeting 0A(z9), and
0A(z) is included in the Julia set. We will see later (Theorem 2.1)
that J = 0A(20).
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EXAMPLE. Consider R(z) = 22. Then R"(z) = 22" converges to 0
in {|z| < 1} and to oo in {|z| > 1}. The Julia set is the unit circle

{lz] = 1}.

EXAMPLE. Let R(z) = 22 — 2. We have seen in Section II.1 that the
basin of attraction of co coincides with C\[—2, 2], so the Julia set J
is the closed interval [—2,2].

The preceding two examples may be misleading. Julia sets are al-
most always intricate fractal sets, which are conformally self-similar.
See the figures in Chapter VIII of the Julia sets of R(z) = 22 + ¢ for
various other values of c.

ExAMPLE. Take A, |A\| = 1, such that R(z) = Az + 22 is conjugate
to an irrational rotation Az near 0 (such exist by Theorem I1.6.4).
Then {R"} is normal in neighborhoods of 0 and oo, so there are
components Uy and Uy, of F containing these points. Since co is an
attracting fixed point and R"(0) / oo, they must be distinct. Hence
R™(Uyp) never hits Us, and {R"} is uniformly bounded on Uj. Also
Up is simply connected, since by the maximum principle {R"} is
bounded within any closed curve in Uy. In view of Theorem I1.6.2,
we see that Uy is characterized as the largest domain containing 0,
invariant under R, on which the conjugation map exists.

A simply connected component of the Fatou set in which R is
conjugate to an irrational rotation is called a Siegel disk. An example
is illustrated in Section V.1.

THEOREM 1.1. The Julia set J contains all repelling fized points
and all neutral fized points that do not correspond to Siegel disks.
The Fatou set F contains all attracting fixed points and all neutral
fized points corresponding to Siegel disks.

Proof. This is obvious, in view of Theorem I1.6.2. O

In the third example above we saw that a disk around 0 was in
the Fatou set for some |A\| = 1, but if |[A\| > 1 then it is a repelling
fixed point so is in the Julia set. Thus F and J may move quite
discontinuously as R varies. We shall see other examples of this later.
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THEOREM 1.2. The Julia set J ts nonempty.

Proof. Recall our standing assumption that R has degree d > 2.
Suppose J = 0. Then {R"} is a normal family on all of C, and
so there is a subsequence {n;} such that R"(z) — f(z) for some
analytic function f from C to C. Since f is analytic on all of Citisa
rational function. If f is constant then the image of R™ is eventually
contained in a small neighborhood of the constant value, which is
impossible since R" covers C. If f is not constant, eventually R™
has the same number of zeros as f (apply the argument principle),
which is also impossible since R™ has degree d". U

We say that a set E is completely invariant if both it and its
complement are invariant. Since R is onto, this occurs if and only if
RYE)=E.

THEOREM 1.3. The Julia set J is completely invariant.

Proof. Clearly R™!(F) C F. Suppose 2o € F, and suppose { R ! =
R" o R} converges uniformly (in the spherical metric) on a neigh-
borhood of zg. Since R maps open neighborhoods of zp onto open
neighborhoods of R(z), {R"} converges uniformly on a neighbor-
hood of R(zg). It follows that R(z0) € F, and R(¥) C F. Hence F
is completely invariant, as is its complement J. O

THEOREM 1.4. For any N > 1, the Julia set of R coincides with that
of RN.

Proof. The Fatou sets for R and RN are the same, since {R"} is
normal on an open set U if and only if {R™"} is normal on U. O

Let z € J and let U be any neighborhood of 2. By Montel’s
theorem (Theorem 1.3.2), the sequence {R"} on any such U omits a
set F, containing at most two points.

THEOREM 1.5. The set E, is independent of z (so shall be denoted
as E). If E is a singleton, we can conjugate it to 0o, and then R(z) s
a polynomial. If E consists of two points, we can conjugate these to
0 and oo, and then R(z) is Cz% or Cz~%. In all cases, E is contained
in the Fatou set F.
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Proof. By the definition R~!(E,) C E,. If E, is one point a, then
R(a) = a. Take a = oco. Since R7!(00) = oo, there are no other
poles, and R is a polynomial. Clearly F, is independent of 2. If E,
consists of two points, we may assume these to be 0,00 and either
R(0) = 0, R(co0) = oo or R(0) = oo, R(oco) = 0. In the first case,
R is a polynomial with 0 as its only zero, so R(z) = Cz®. Similarly,
R(z) = Cz% in the second case. O

The set E is called the ezceptional set of R. It follows immediately
from the definition of E that if 2 ¢ E then J is adherent to the
inverse orbit U,>1 R (%) of z. Since E is disjoint from J, we obtain
in particular the next two theorems as corollaries.

THEOREM 1.6. The backward iterates of any z € J are dense in J.

This theorem can be used as a basis for computing J (the inverse
iteration method). It is effective when the degree of R is small, so that
the number of inverse iterates does not grow uncontrollably fast.

THEOREM 1.7. Any nonempty completely invariant subset of J is
dense in J. If D is a union of components of F that is completely
invariant, then J = 0D.

Proof. For the second statement, note that dD is a completely in-
variant subset of J. O

THEOREM 1.8. The Julia set J contains no isolated points, that is,
J is a perfect set.

Proof. Take 2y € J and U an open neighborhood of z. First assume
2o is not periodic and choose z; with R(21) = z9. Then R"(29) # z1
for all n. Since 2; € J, backward iterates of z; are dense in J, so
there is a ¢ € U with R™({) = 21. Thus ( € 7N U and ¢ # 2.
Next suppose R"(zg) = zy for some minimal n. If 2y were the
only solution of R™(z) = zp then zy would be a superattracting fixed
point for R™, contradicting zp € J. Hence there is 27 # z9 with
R"™(z1) = 2. Furthermore R’(z) # 21 for all j since otherwise it
would hold for some 0 < j < n (by periodicity) and hence R?(z) =
R""I(z) = R"(21) = 20 , contradicting the minimality of n. As
before, z; must have a preimage in U N J which cannot be 2y. O
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ExAMPLE. The Julia set of a Blaschke product B(z) of degree d > 2
is either the unit circle A or a Cantor set on OA. Indeed, the iterates
of B(z) are normal on A and outside A, so J is a perfect subset of
AA. Suppose some zg € J is adherent to F N JA. Since F N 0A is
completely invariant, and since arg B" is strictly increasing on 0A,
each inverse iterate of zo is also adherent to F N @A. By Theorem
1.6, J is adherent to FNOA, consequently J is totally disconnected.

THEOREM 1.9. If the Julia set J has nonempty interior, then J
coincides with the extended complex plane C.

Proof. Suppose there is an open U C J. Then R*(U ) C J. But
UR™(U) = C\E is dense in C and since J is closed, J = C. O

EXAMPLE. The Latteés function (2% + 1)2/4z(z* — 1) discussed in
Section I1.1 has Julia set J = C, since a dense subset of C is iterated
to the repelling fixed point at co. We will see later, as a consequence

of Theorem V.1.2, that 1 — 2/2? also has Julia set J = C.

2. Counting Cycles

In this section we show that the number of attracting and neutral
cycles of a rational map is finite. Along the way we show that each
basin of attraction for an attracting or parabolic cycle contains a
critical point. This bounds the number of such cycles by the number
of critical points.

Recall the basin of attraction of an attracting fixed point zp is
the set A(z0) = A(zo, R) consisting of z such that R™(z) — zo. If
{20, .-, 2m—1} is an attracting cycle of length m, then each z; is an
attracting fixed point for R™, and we define the basin of attraction of
the attracting cycle, or of 2o, to be the union of the basins of attrac-
tion A(z;, R™) of the z;’s with respect to R™. The basin of attraction
is again denoted by A(zp). The immediate basin of attraction of the
cycle, denoted by A*(2), is the union of the m components of A(zp)
which contain points of the cycle.

THEOREM 2.1. If 29 is an attracting periodic point, then the basin
of attraction A(zo) is a union of components of the Fatou set, and
the boundary of A(z) coincides with the Julia set.
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Proof. Let U be an open neighborhood of the cycle of zy contained
in the Fatou set. Then A(zg) is the union of the backward iterates
of U, an open subset of the Fatou set. If wy € 0A(zp) and V is
any neighborhood of wyp, then the iterates R"(z) converge towards
the cycle of zp on V' N A(zp), whereas they remain outside A(zg) for
z € V\A(2p). Consequently {R"} is not normal on V, and wg € J.
Since A(zp) is completely invariant, Theorem 1.7 gives J = 0A(z).
O

THEOREM 2.2. If zy is an attracting periodic point, then the imme-
diate basin of attraction A*(zp) contains at least one critical point.

Proof. Suppose first that 2y is an attracting fixed point. We may
assume its multiplier A satisfies 0 < |A| < 1. Let Uy = A(29,¢€) be a
small disk, invariant under R, on which the analytic branch f of R~}
satisfying f(z9) = 2o is defined. The branch f maps Uy into A*(2p),
and f is one-to-one. Thus U; = f(Uy) is simply connected, and
U1 D Uy. We proceed in this fashion, constructing U, 1 = f(U,) D
U, and extending f analytically to U,41. If the procedure does not
terminate we obtain a sequence f" : Uy — U, of analytic functions
on Uy which omits 7, hence is normal on Uy. But this is impossible,
since 29 € Uy is a repelling fixed point for f. Thus we eventually
reach a U, to which we cannot extend f. There is then a critical
point p € A*(zy) such that R(p) € U,.

If 2y is periodic with period n > 1 and |(R")'(20)| < 1, this ar-
gument shows each component of A*(z) contains a critical point
of R™. Since (R")'(z) = [ R'(R’(z)), A*(20) must also contain a
critical point of R. O

REMARK. We observe for later reference that the critical point p
produced above, for an attracting cycle that is not superattracting,
has distinct iterates R¥(p), & > 1. This is because R is one-to-one
on U,.

Since there are 2d — 2 critical points, counting multiplicity, Theo-
rem 2.2 shows that the number of attracting cycles is at most 2d — 2.
A proof of Theorem 2.2 can be based on Koenigs’ coordinate func-
tion ¢ and the (locally defined) inverse p~! near 0. Recall that ¢
maps A*(z9) onto C, ¢(z9) = 0, and ¢'(29) # 0. Since A* omits three
points and hence cannot be mapped conformally onto C, the radius
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of convergence p of the power series for ¢~ 1(¢) at 0 is finite. There
must be a critical point for R on the boundary of o 1(|¢] < p), or
else the functional equation ¢ 1({) = R (¢~ 1(X)) could be used
to extend ¢! to a larger disk.

Next we deal with the rationally neutral fixed points. First suppose
20 is a fixed point with multiplier 1, and let P be an attracting petal
at 2. The basin of attraction associated with P consists of all z such
that R"(z) € P for some n > 0, that is, such that R™(z) tends to 2o
through P. As in the case of attracting cycles, the basin of attraction
is an open subset of the Fatou set F, whose boundary coincides with
the Julia set. The immediate basin of attraction is the connected
component of the basin of attraction containing P.

The definitions are extended in the obvious way to arbitrary ratio-
nally neutral cycles, as follows. Suppose {zg, .., zn—1} is a parabolic
cycle of length n, so that the multiplier of R™ at the fixed point zp is
a primitive mth root of unity. Let P be an attracting petal for R™™
at z9. We define the basin of attraction of R containing the petal P
to consist of all z such that R¥(z) € P for some k > 1. In this case,
the sets R/(P), 0 < j < nm, are disjoint attracting petals at the
zj’s, and the basin of attraction of R containing P is the union of
the basins of attraction of R"™ containing the R?(P)’s. The imme-
diate basin of attraction containing the petal P is the union of the
nm connected components of F containing the RI(P)’s.

THEOREM 2.3. If 2y is a rationally neutral periodic point, then each
immediate basin of attraction associated with the cycle of zp contains
a critical point.

Proof. Replacing R by RYN . we may assume R(z) = zo and R'(z0) =
1. Let A* be the immediate basin of attraction containing a petal p
at zo. Let ¢ be the Fatou coordinate function defined on P, so that
¢ is univalent and conjugates R to a translation: ¢(R(2)) = ¢(2)+1.
Since R(A*) = A*, the functional equation allows us to extend ¢ to
A*, where it satisfies the same identity. Since ¢(P) covers aright half-
plane, ¢ maps A* onto the entire complex plane. Now ¢ has a critical
point wo in A*, else we could define a branch of ¢~!, which would
be a meromorphic function on the entire complex plane omitting the
Julia set, hence constant. For n large, R"(wo) is in P, where ¢ has
no critical points, so by replacing wo by the largest iterate that is
a critical point, we can assume that R(wo) is not a critical point of
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. From the functional equation we then have ¢'(R(wo))R'(wo) =
¢'(wp) = 0, so that wy is a critical point of R. O

THEOREM 2.4. The number of attracting cycles plus the number of
rationally neutral cycles (counting their natural multiplicity) is at
most 2d — 2.

Proof. This follows immediately from Theorems 2.2 and 2.3, since the
basins of attraction are disjoint, and since there are at most 2d — 2
critical points. O

Finally we treat irrationally neutral cycles by means of an analytic
perturbation.

LEMMA 2.5. Let Ri(z) be a family of rational functions depending
analytically on a parameter t. Let zy be a periodic point of Ry, of
period m, and suppose the multiplier of the cycle of zo is # 1. Then
for t near ty there is a unique periodic point z(t) of R; of period
m near zg. The periodic point z(t) depends analytically on t, and
2(to) = 29. The multiplier A(t) of the cycle is analytic, and 2(t) and
A(t) extend analytically along any path in the t-plane along which R;
is defined provided \(t) remains bounded away from 1, so that z(t)
18 periodic of period m.

Proof. Set Q(z,t) = R*(z) — z, and let (R{")'(z) be the z-derivative
of R7*(z). A point z is periodic for R; with period dividing m if and
only if Q(z,t) = 0. If the period is exactly m, then the multiplier
of the cycle is A\(t) = (R}*)'(z). Now the z-derivative of Q(z,c) is
(R™)'(z) — 1. Thus the implicit function theorem guarantees that if
the multiplier of the cycle of 2y is not 1, the equation Q(z,t) = 0
has a unique solution z(t) near 2z for t near to, and z(t) depends
analytically on t, as does the multiplier \(¢) of the cycle of z(t). The
period of each z(t) divides m, and the set of t-values for which it is
equal to m is evidently open, so the period must remain constant
along any path. O

THEOREM 2.6. The number of attracting cycles plus half the number
of neutral cycles with multiplier # 1 is at most 2d — 2.

Proof. We consider an analytic perturbation R; of R = Rp. Under
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an analytic perturbation we can expect half the neutral cycles to
become attracting. To foreclose the possibility that the multiplier of
the perturbed cycle is constant, we choose our perturbation to be
an analytic deformation of R to 2%, which has no neutral cycles. If
R = P/Q, then such a deformation is given for instance by Ri(z) =
(1 — t)P(2) + tz4]/[(1 — t)Q(z) + t], defined for all complex t for
which R; has degree d (a cofinite subset of C).

Let 2z be a neutral periodic point of R, with period m and with
multiplier A\g # 1. Let z(t) be as in the preceding lemma, with mul-
tiplier A(t). Since we can continue z(t) and A(t) analytically along
some path to 1, and [A(1)| # 1, A(t) is not constant. Let E, be the
set of @ such that |A(pe®)| < 1. Then the length of E, tends to 7 as
p— 0.

Define these sets for one point in each neutral cycle. Suppose there
are N such cycles. Let E; , be the corresponding set and let Xj,p(0)
be the corresponding characteristic function on the circle. Then

N o1 g2 1
E _ . >_N —
o 27(/0 X],p(e)de Z 2N 5(/’)7

where ¢(p) — 0 as p — 0. Hence for p small, there is a § with
S xjp(0) > N/2.If p is small enough, then the old attracting cycles
of R still correspond to attracting cycles for R; and at least half of
the neutral cycles do also. By Theorem 2.4, R; has at most 2d — 2
attracting cycles and this completes the proof. O

Theorems 2.4 and 2.6 combined yield immediately the finiteness
theorem for nonrepelling cycles, with the estimate 6d — 6. The proof
method we have followed is due to Fatou.

THEOREM 2.7. The total number of attracting and neutral cycles is
at most 6d — 6.

The sharp value for Theorem 2.7 is 2d — 2, due to M. Shishikura
(1987), who obtained the result for his Master’s thesis. He showed,
using quasiconformal surgery, that there is an analytic perturbation
for which all neutral cycles become attracting (see [Be2]). We prove
this later for polynomials (Theorem V1.1.2), in which case the sharp
estimate of d — 1 bounded nonrepelling cycles is due to A. Douady
(1982).
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3. Density of Repelling Periodic Points

We can now prove the theorem, obtained independently by Julia and
Fatou, which was mentioned at the beginning of the chapter.

THEOREM 3.1. The Julia set J is the closure of the repelling periodic
points.

Proof. Suppose there is an open disk U that meets J and that con-
tains no fixed points of any R™. We may assume U contains no poles
of R nor critical values of R. If f;, fo are two different branches of
R~! on U, then since there are no solutions of R™(z) = z in U,

g _R"-hHh z2-F
"R —fo z-fi

omits the values 0,1,00 in U. By Montel’s theorem, {g,} is normal
and hence so is { R"}, a contradiction. Thus periodic points are dense
in J. Since there are only a finite number of attracting and neutral
cycles, and since J is perfect, the repelling cycles are dense. O

THEOREM 3.2. Let U be open, and suppose U N J # 0. Then there
is an integer N such that RN(UNJ) = J.

Proof. Let zgp € U N'J be a repelling periodic point with period
n. Choose V open so that zp € V C U and V C R*(V). Then
R*-1)(V) c R™¥(V), and by Theorem 1.5

J c C\E C UZ,RY (V).

Since J is compact, the Heine-Borel theorem implies J C R™(V)
for some j. Thus the theorem holds with N =nj. O

Theorem 3.2 shows that J is “almost everywhere” conformally
self-similar. More explicitly, if zo € J has no critical point in its
forward orbit, then within any neighborhood of any other point of
J there is an open subset of J that is the conformal image of a
neighborhood of zj.

An open subset A of C is a conformal annulus if A can be mapped
conformally to a genuine annulus {r < || < s}. The modulus of A is
defined to be log(s/r) times a normalization factor 1/2m, and this is a
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conformal invariant. A compact subset E of C is uniformly perfect.
if E has at least two points and if the moduli of the conformal annuli
in C\E which separate E are bounded. As an application of the
Fatou-Julia theorem, we prove the following theorem of R. Mané
and L.F. da Rocha (1992).

THEOREM 3.3. The Julia set J of R is uniformly perfect.

Proof. Suppose there is a sequence {An} of conformal annuli in F
with moduli tending to oo, such that both components of C\A,, meet
J. Let E, be the component of C\A,, with the smaller diameter
(measured in the spherical metric). The diameter of E, tends to 0,
as can be seen by noting that there are closed geodesics (conformal
circles) in A, whose hyperbolic lengths tend to 0 as n — 0o, and by
using the usual comparison of metrics. Let v, map the open unit disk
conformally onto A, U Ep, so that Yn(0) € E,. Then K, = U H(ER)
is a continuum in A containing 0. The modulus of A\Ky also tends
to 0o, since it is the same as that of A,. Hence the diameter of K,
tends to 0, as above.

Fix 6 > 0 small, and assume that the diameter of E, is less than
5. In view of Theorem 3.2, there is a first integer kn such that the
diameter of R*"(E,) exceeds 6. If gn = RFr 0 ),,, then the diameter
of gn(K») is at least 6. Now the diameter of R¥»(E,) is at most C4,
where C is the Lipschitz constant of R (with respect to the spherical
metric). Fix four points of J which are of distance greater than C
from each other. Since gn(A\K,) C F and gn(Ky,) has diameter
at most C§, each g, omits at least three of the four (fixed) points.
Consequently {gn} is a normal family, and the diameter of gn(Kr)
tends to 0. This contradiction establishes the theorem. U

A simple scaling and normal families argument shows that confor-
mal annuli of large modulus contain genuine annuli of large modulus.
Thus the compact set E is uniformly perfect if and only if there is
¢ > 0 such that for any finite 20 € E and 7 > 0 (and r < 70
when oo ¢ E), the euclidean annulus {cr < |z — 20| < r} meets E.
Uniformly perfect sets were introduced by A.F. Beardon and Ch.
Pommerenke (1979), who showed that if co ¢ E, the compact set E
is uniformly perfect if and only if the hyperbolic metric of the com-
plement of E is comparable to the reciprocal of the distance to the
boundary, that is, the factor log(1/6(z)) appearing in Theorem 14.3
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can be omitted. There are many other characterizations of uniformly
perfect sets. One characterization is in terms of linear density of log-
arithmic capacity (see [Po2]). This guarantees that Green’s function
of any fixed component of the Fatou set extends to the boundary to
be Holder continuous, and this in turn implies that Julia sets have
positive Hausdorff dimension. For more details, see Section VIII.3,
where Holder continuity is proved in the context of quadratic poly-
nomials.

4. Polynomials

In this section we consider the case where R = P is a polynomial
of degree d > 2. We have a superattracting fixed point at co. The
iterates of P are bounded on the bounded components of F, by the
maximum principle, so the basin of attraction A(oo) is connected.
By Theorem II1.1.7, the Julia set coincides with 0A(c0).

The filled-in Julia set of P, denoted by K, is defined to be the
union of the Julia set J and the bounded components of F. Thus
z € K if and only if the iterates P™(z) are bounded. This property
can be taken as a basis for drawing computer pictures of X and of
J. For K, color z purple if |[P"(z)| < C for 1 < n < N, otherwise
color z white. For J simply recolor z white if it and all its neighbors
are purple. This algorithm for computing J is called the boundary
scanning method.

Let ¢ conjugate P(z) to (% near oo, with ¢(z) = z+O(1) at co. As
discussed in Section II.4, log |p(z)| coincides with Green’s function
G(z) for A(co) with pole at co. The functional equation for ¢(z)
gives a functional equation for Green’s function,

G(P(z)) =d-G(z), z € A(00).

Thus P maps level curves of G to level curves, increasing d-fold
the value of Green’s function. Green’s function provides a precise
measure of the escape rate to co. The exterior {G > r} of the level
curve is invariant under P, and P maps it d-to-one onto {G > rd}.
For r large, ¢(2) is defined on {G > r} and maps it conformally onto
{I¢] > €"}. The equation ¢(z) = (p(P(2)))}/¢ allows us to extend
©(2) to {G > r/d} provided no critical point of P belongs to this
domain.

Now there are two cases to consider. If there is no critical point
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FIGURE 1. Level lines of Green’s function with J totally disconnected.

of P in A(c0), we can continue ¢ indefinitely to all of A(00), and ¢
maps A(co) conformally onto the complement {[| > 1} of the closed
unit disk in the ¢-plane. In particular, A(co) is simply connected, and
the Julia set J = 0A(00) is connected.

Otherwise we extend ¢ until we reach a level line {G = r} of
Green’s function that contains a critical point of P. The situation
is then as follows. The domain {G > r} is simply connected and
mapped by ¢ conformally onto {|¢| > €"}. The domain forms several
cusps at the critical point, and ¢(z) approaches different values as
z approaches the critical point through different cusps. The level
line {G = r} consists of at least two simple closed curves that meet
at the critical point. Within each of these curves there are points
of J, or else G would be harmonic and positive, hence constant
within the curve. Hence J is disconnected. In fact, in this case J
has uncountably many connected components. This can be seen by
noting that the critical points of G are the critical points of P and
all their inverse iterates, and by following the splitting of level curves
at each such critical point.

We have proved in particular the following.

THEOREM 4.1. The Julia set J is connected if and only if there is no
finite critical point of P in A(00), that is, if and only if the forward

orbit of each finite critical point is bounded.

At the other extreme we have the following.
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THEOREM 4.2. If P"(q) — oo for each critical point q, then the Julia
set J 1is totally disconnected.

Proof. Let D be a large open disk containing .7 such that P(C\D) C
C\D. Choose N so large that PY maps the critical points of P to
C\D. For n > N there are no critical values of P™ in D, so that all
inverse branches P~" are defined and map D conformally into D. Let
20 € J. Then P"(zy) € J, and we define f, to be the inverse branch
of P™ which maps P"(zg) to z9. The f,’s are uniformly bounded on
a neighborhood of D, hence they form a normal family there. Since
fn(z) accumulates on J for z € DN A(0), any limit function f maps
D N A(o0) into J. Since J contains no open sets (Theorem 1.9), f
must be constant. Hence f,,(D) has diameter tending to zero. Since
f2(0D) is disjoint from J, {29} must be a connected component of
J, and J is totally disconnected. O

If P is quadratic, then Theorems 4.1 and 4.2 cover all cases, and
the corresponding Julia set is either connected or totally discon-
nected. We study quadratic polynomials in detail in Chapter VIII,
in connection with the Mandelbrot set.



IV

Classification of Periodic
Components

We focus on the behavior of a rational function R(z) on the Fatou set
F. Our aim is twofold: to show that every component of F is iterated
eventually to a periodic component, and to classify the action of R(z)
on periodic components.

1. Sullivan’s Theorem

As before, we assume that the degree of R is d > 2. The image of
any component of the Fatou set F under R is a component of F,
and the inverse image of a component of F is the disjoint union of
at most d components of F. The dynamics of R can be understood
in part by determining how the various components of 7 are moved
about by R.

Consider a fixed component U of F. There are several possibilities
for the orbit of U under R.

1. If R{U) = U, we call U a fized component of F.

2. If R*(U) = U for some n > 1, we call U a periodic component
of F. The minimal n is the period of the component. If n =1,
we have a fixed component.
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3. If R™(U) is periodic for some m > 1, we call U a preperiodic
component of F.

4. Otherwise, all {R"(U)} are distinct, and we call U a wandering
domain.

We have already seen several examples of fixed and periodic com-
ponents of F, and we will soon see strictly preperiodic components.
I.N. Baker (1976) has shown that some entire functions have wan-
dering domains. However, according to D. Sullivan (1985) this is not
possible for rational functions, and our main goal in this section is
to prove this. First we make some preliminary observations.

On any component U of F, R is a branched cover of U over R(U)
with at most d sheets. A component of F is completely invariant if
and only if R is a d-sheeted branched covering of the component over
itself.

THEOREM 1.1. If U is a completely invariant component of F, then
U = J, and every other component of F is simply connected. There
are at most two completely invariant components of F.

Proof. If U is completely invariant, then 0U = J, by Theorem II1.1.7.
Moreover the sequence {R"} omits the open set U on C\U, so { R"}
is normal there, and C\U C F. Since U is connected, each compo-
nent of C\U is simply connected. If U is furthermore simply con-
nected, then since R is a d-to-1 mapping, U must contain d—1 critical
points. Since there are only 2d—2 critical points altogether, there can
be at most two simply connected completely invariant components.
]

THEOREM 1.2. The number of components of the Fatou set can be
0, 1, 2, or 0o, and all cases occur.

Proof. Suppose F has only finitely many components and let Uy be
one. Consider a chain of inverse images R(U-1) = Uy, R(U-2) =
U_q,---. Eventually we reach U_, with R(U_n) = U_g for some
0 < k < n. Then Uy = R*(U_,) = R*(U-) = R"*(Up). Thus
each component Uy of F is periodic, and since there are only finitely
many, there is some N such that RN(U) = U for every component
U. Hence every component is completely invariant for RV, and by
the preceding theorem there are at most two components.
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We have seen in the previous chapter that the map R(z) = 22 has
two components in its Fatou set and R(z) = 2% — 2 has one. The
Lattes example in Section III.1 has empty Fatou set F and Julia set
J = C. Finally, if P(z) = Az+ 22 is chosen to correspond to a Siegel
disk, then F has infinitely many components. To see this, let Uy and
U be the components containing 0 and oo respectively. Since R is
conjugate to a rotation of Uy there are no critical points in Up and
R is one-to-one on Uy. Thus Uy has a distinct preimage U, which is
also distinct from Uy, so F has infinitely many components. O

THEOREM 1.3 (Sullivan). A rational map has no wandering domains.

Proof. Assume Up is wandering and let U, = R"(Up),n > 1. We
assume oo is in some component V of F other than the U,’s. This
implies that 3 arealU, < oo, which implies that the only possible
limit functions of {R"} on Up are constants. In fact, (R")" — 0 on
compact subsets for otherwise each U, would contain a disk with
diameter bounded uniformly away from 0. Replacing U, by Unim,
we may assume no U, contains a critical point of R.

We claim that R maps each U, one-to-one onto Uy, 1. For this it
suffices to prove that each {Uy,} is simply connected. Let v be a closed
curve in Ug. Since (R") — 0 on Uy, the diameters of the images
R™(v) tend to 0. Now each pole of R is contained in a component of
F that is mapped to V, and the images of v are not mapped to V,
so that if the diameter of R"(7) is sufficiently small, say for n > N,
there are no poles of R in the bounded components of C\R" ().
Then the iterates RN ¥ are all analytic inside C\R" (), and by the
maximum modulus principle they are uniformly bounded there, so
that the bounded components of C\R" (v) are included in F, hence
in Un. Then RM(v) is homotopic to a constant path in Uy. Since
there are no critical points, R is a covering map of Up over Uy, and
the homotopy can be lifted to a homotopy of ¥ to a constant in Up.
Hence Uy is simply connected, as is each U, by the same argument.

We will now construct a family of quasiconformal mappings { f;}
with t € CV, so that f;l o Ro f; is an N-dimensional analytic family
of distinct rational maps. Since they have the same degree as R, this
gives a contradiction if we take N > 2d — 1.

So fix N > 2d—1, and suppose Dy = A(0,¢) C D = A(0,2¢) C Up.

"For t = (t1,...,tn) in CV, |t| < 6, we define a Beltrami coefficient
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(ellipse field) p on Dg by
N .. .
= the_wo, z=re? € Dy.

For n > 1, set D, = R*(Dy). Since the D,’s are disjoint and R
maps each D conformally onto Dy1, we can extend the elhpse field
to UD,, to be invariant under R. Each component of R™!(UD,) is
mapped finite-to-one onto one of the Dy’s, so we can further extend
the ellipse field to R™!(UD,,), and proceeding backwards to all in-
verse images of UD,, to be invariant under R. Since R is conformal,
the extension does not increase ||u||oo- For other z set u = 0, and
then the ellipse field is everywhere invariant. Note that u = 0 on
U\ Do.

Let fi(z) = f(z,t) be the solution of the Beltrami equation, nor-
malized so f(z,t) = z + o(1) at co. Now (suppressing the t’s) let
g = f. — 1 and recall from Section 1.7 that

= (I-U,)7'S(w) = S() + Un(S(w)) + UZ(S() + -

Since ||ulloo = O([t]), also |IS(w)ll2 = O([t]), [|Uull2 = O(It]), and
consequently g = S(u) + O(|t|?) in L2. Thus with ¢ = £ +1in = pe'®,
we calculate for z € D\ Dy that

a9
t;

_ 95(w)
at;

e~ ¢ ¢
// d€d77+%( ) = Fatei(2),

t=0

where the ;’s are analytic in D, and ¢; = —2e9+2(j4+1)/(j +2) # 0.
It follows that if A = ();) € CN A# 0 then for some z € D\Dy

E \i=—(z,0) # 1.1
7 at 0 (1.1)
because otherwise

Ajcj
ZZ_JJTJQ = —Z)\japj, € < |z| < 2,

which contradicts the uniqueness of Laurent expansions.

From the invariance of the ellipse field, we see that Ry = fio Ro
(fi)~! is analytic. (See the remark at the end of Chapter L) It is
furthermore d-to-1. Thus it is a rational mapping of the same degree
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as R. By Theorem 1.7.6, f; depends analytically on the parameter
t, and moreover fy is the identity z. Hence R; depends analytically
on the parameter ¢, and Ry = R. Thus the (normalized) coefficients
of R; are holomorphic functions of ¢ and agree with those of R at
t = 0. Write, assuming R(o0) =1,

ag(t)z® +ag_12%7 1 + -+ ap(?t)

Rt(z) = zd+bd_l(t)zd_1-'-+b0(t) )

where a4(0) = 1 and a;(t), b;(t) are holomorphic in {|t| < 6}. Let V
be the connected component containing 0 of the analytic subvariety
of {|t| < 6} determined by the equations a;(t) = a;(0),b;(t) = b;(0).
There are only 2d—1 equations here, and so V has positive dimension.
(For background on analytic varieties, see [GuR].)

Let 7 € V. Then f,oRo(f,)~! = R.If 29 is a fixed point of R", then
so is fr(20), and vice versa, since f;(z0) = fr(R"(20)) = R*(f-(20))-
If 2 is a repelling fixed point for R™ then so is fr(z9). Hence the
set A, of such fixed points satisfies f.(A,) = A,. However, since
fo is the identity and A, is discrete, f; must fix each point of A,.
But UA,, is dense in J, by Theorem I1.2.8, and so f.(z) = z on
J. Now f(z) is analytic on Up\Dp and f-(z) = z on 0Up C J. It
follows that f;(z) = z in Up\Dp. (For an elementary argument, map
Up conformally to the unit disk and observe that f;(z) — 2z becomes
analytic on an annulus {r < |{| < 1} and tends to 0 as || — 1, so is
identically 0 on the annulus.)

Now changing notation, we have f(z,7) —2z = 0 for all z € Up\ Do,
T € V. Since g = f, — 1, we obtain

g(z,7) =0, z € Up\Dy, T € V. (1.2)

If 79 is a regular point of V, there is an analytic map ¢ — 7(¢) of
a disk A(0,6) into V with 7(0) = 79 and 7'(0) = A, |A| = 1. From
(1.2) and the chain rule we obtain

0
S Ao(2,70) =0,  z€ Up\Do.
Ot;
Here the unit vector A depends on 7g, and passing to a limit of such

\'s as 79 — 0 we obtain a contradiction to (1.1). We conclude there
are no wandering domains. O



74 IV. Classification of Periodic Components
2. The Classification Theorem

Having ruled out the possibility of wandering domains, we now know
that every component of the Fatou set is periodic or preperiodic. Our
next goal is to classify periodic components. We have already seen
some examples: domains containing an attracting fixed point, and
Siegel disks. There are various other possibilities.

A periodic component U of period n of the Fatou set F is called
parabolic if there is on its boundary a neutral fixed point ¢ for R™
with multiplier 1, such that all points in U converge to ¢ under
iteration by R™. The domains U, R(U), ..., R* }(U) form a parabolic
cycle. Their union is the immediate basin of attraction associated
with an attracting petal at .

A periodic component U of period n of the Fatou set is called
a Herman ring (or an Arnold ring) if it is doubly connected and
R™ is conjugate to either a rotation on an annulus or to a rotation
followed by an inversion. We shall see in Chapter VI that Herman
rings can occur and that moreover there can be only finitely many of
them. The definition of Siegel disk is similarly extended to include
periodic components U that are simply connected, on which some
R" is conjugate to a rotation. Siegel disks and Herman rings are
referred to as rotation domains.

THEOREM 2.1. Suppose U is a periodic component of the Fatou set
F. Then exactly one of the following holds:

1. U contains an attracting periodic point.
2. U is parabolic.

3. U is a Siegel disk.

4. U is a Herman ring.

Proof. We may assume U is fixed by R. Since J has more than two
points, U is hyperbolic. The proof will be organized as a series of
lemmas in the context of analytic maps of hyperbolic domains. Let
p = pu denote the hyperbolic metric on U. The first alternative of
Theorem 2.1 is covered by the following lemma.

LEMMA 2.2. Suppose U is hyperbolic, f : U — U is analytic, and f
is not an isometry with respect to the hyperbolic metric. Then either
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f™"(z) = OU for all z € U, or else there is an attracting fized point
for f in U to which all orbits converge.

Proof. Since f is not an isometry, p(f(z), f(w)) < p(z,w) for all
z,w € U. In particular for any compact set K C U, there is a
constant k = k(K) < 1 such that

p(f(2), f(w)) < kp(z,w), z,w € K.

Suppose there is zg € U whose iterates z, = f™(2p) visit some com-
pact subset L of U infinitely often. Take K to be a compact neigh-
borhood of LU f(L). Then p(2m+2, 2m+1) < kp(2m+1, 2m) whenever
zm € L, and this occurs infinitely often, so p(zn+1,2,) — 0. Thus by
continuity any cluster point { € L of the sequence {z,} is fixed by
f, and in fact is an attracting fixed point since p(f(z),¢) < kp(z,()
in some neighborhood of (. Since the iterates of f form a normal
family, they converge on U to (. O

The third and fourth alternatives of Theorem 2.1 are covered by
the following.

LEMMA 2.3. Suppose U is hyperbolic, f : U — U is analytic, and
f is an isometry with respect to the hyperbolic metric. Then exactly
one of the following holds:

1. f*(z) = 0U forallz€U.
2. f™(2) =z for all z € U and some fized m > 1.

3. U is conformally a disk, and f is conjugate to an irrational
rotation.

4. U 1is conformally an annulus, and f is conjugate to an irra-
tional rotation or to a reflection followed by an irrational ro-
tation.

5. U is conformally a punctured disk, and f is conjugate to an
irrational rotation.

Proof. Since f is an isometry with respect to the hyperbolic metric,
f is a conformal self-map of U.

Suppose first that U is simply connected. Let ¢ map U conformally
onto the open unit disk A. Then S = po fop~! is a conformal self-
map of A, a Mo6bius transformation. If S has fixed points on the unit
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circle, then |S?| — 1 on A, and (1) holds. If S has a fixed point in
the disk, we may assume it is at the origin. Then S is a rotation,
and either (2) or (3) holds.

Now assume U is not simply connected. Let ¢ : A — U be the
universal covering map, and let G be the associated group of covering
transformations, the group of conformal self-maps g of A satisfying
¥ o g = 1. The lift of f to the unit disk via ¢ is a Mobius transfor-
mation F, which satisfies o F' = fo. Let I be the group obtained
by adjoining F' to G.

Assume first T discrete (orbits accumulate only on dA). Since no
iterate f* of f is the identity on U, no iterate F k of F belongs to
G. Since T is discrete, this implies gF k(0) — OA uniformly in g € G.
Hence f¥(z9) — 90U, and (1) holds.

The final possibility is that I" is not discrete. Let T be the closure
of T in the (Lie) group of conformal self-maps of A, and let I'g be
the connected component of I' containing the identity. If g € G then
also FgF~! € G, since

Yo(FogoF l)=fopogoF '=foypoF ' =fof loy=1.

It follows that T, and hence Iy, also conjugates G to itself. Since G
is discrete and T’y is connected, hgh™! =g forallh € g and g € g,
and every g € G commutes with every h € Io.

LEMMA. If A and B are two conformal self-maps of the open unit
disk A which commute, and A is not the identity, then B belongs to
the one-parameter subgroup generated by A.

Proof. There are three cases:

CASE 1. Suppose A has a fixed point in A. We may assume the
fixed point is 0, so that A(z) = ¢®z. Then e?B(0) = (AB)(0) =
(BA)(0) = B(0). Since A is not the identity, B(0) = 0, and B has
the form e®z.

CASE 2. Suppose A has two fixed points on {|z| = 1} which are
different. We can map the problem to the right half-plane with the
fixed points going to 0 and oo, and A(z) = Az for some A>0,A#1L
As above, B either fixes each of 0,00 or interchanges them. In the
second case, B(z) = /2 for some p > 0 and does not commute with
A. Therefore B fixes these points and B(z) = pz.



IV.2. The Classification Theorem 77

CASE 3. Suppose A has one fixed point on {|z| = 1}. Again map the
problem to the right half-plane with oo fixed. Then one sees easily
that A(z) = z 4 Ai for some real A # 0 and B(z) = z + v for some
peR. O

Mobius transformations corresponding to these three cases are
called elliptic, hyperbolic, and parabolic, respectively. It is easy to
show that every such transformation preserving the disk (except the
identity) is one of these three types.

Proof of Lemma 2.3 (continued). Choose h € T'y which is not the
identity. Since G commutes with A it belongs to the one-parameter
group generated by h. Since G is discrete and infinite we conclude
that G has the form {g"}>,. This means that the fundamental group
of U is isomorphic to the integers, and U is doubly connected. Since
U is hyperbolic, U cannot be a punctured plane, and U is either an
annulus or a punctured disk. One of the alternatives (2), (4) or (5)
must hold. O

There is one more technical obstacle to surmount before complet-
ing the proof of the classification theorem. It is handled by the fol-
lowing variant of the “snail lemma”. The reason for the nomenclature
will become apparent from the proof, which stems from Section 54
of [Fa2].

LEMMA 2.4. Suppose U is hyperbolic, f : U — U is analytic on
U and across OU, and f™(z9) — OU for some 29 € U. Then there
is a fized point ( € OU for f such that f*(z) — ¢ for all z € U.
FEither  is an attracting fized point, or ( is a parabolic fized point
with multiplier f'(¢) = 1.

Proof. By Theorem 1.4.3, the spherical distances between the iterates
zn and 241 of 29 tend to 0. Thus the limit set of {z,} is a connected
subset of OU, and furthermore, by continuity of f, any limit point
is a fixed point for f. Since the fixed points of f are isolated, we
conclude that z, — ¢ for some fixed point ¢ € OU of R. The orbit
of every other z € U also converges to , since it remains a bounded
hyperbolic distance from the orbit of 29. The fixed point ¢ is not
repelling, since z, — (.

Suppose f/(¢) = €?™ where @ is rational. Then U is contained in
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the basin of attraction associated with one of the petals at (. Since
the local rotation f at ¢ induces a cyclic permutation of the petals
at ¢, and since f leaves U invariant, in fact f induces the identity
permutation, and f'(¢) = 1.

Suppose f'(¢) = 2™ where 6 is irrational. Assume ¢ = 0. Let
20 € U, and let V be a relatively compact subdomain of U such that
V is simply connected and zg and z1 = f(20) belong to V. Since f
is univalent near 0 and f™ — 0 uniformly on V', we can assume each
f™ is univalent on V. Then

fr(2)
#n(2) f™(20)’

z €V,

is also univalent on V, on(z0) = 1, and 0 & @n(V). Let ¥ be the
Riemann map from A to V, ¢(0) = 29. Then hn(C) = @n(¥(€)) — 1
is univalent on A, hy(0) = 0, h\(0) = ¢},(20)¢'(0), and hy, omits
_1. Thus the function h,/h’(0) belongs to S and omits —1/h!,(0).
The Koebe one-quarter theorem implies |hy,(0)| < 4. Since Sisa
normal family, the sequence {hn/h},(0)} is normal on A, as is {hn}.
Consequently {¢,} is normal on V.

We claim that all limit functions of {¢,} are nonconstant. For
if |pn — 1] < & then f™(V) would be included in a narrow angle
with vertex 0, and if this angle were smaller than 6/3 then since
f(z) = €2z near 0, #7t1(V) would be disjoint from f"(V'), contrary
to hypothesis. Thus ¢/,(z0) is bounded away from 0. From Koebe’s
theorem again we deduce that there is p > 0 such that ¢n (V) con-
tains a disk centered at 1 of radius p. Thus f™(V) contains a disk
centered at z, of radius p|zn|.

Choose N so that the disks of radius p/2 centered at the points
62’””9, 0 < m < N, cover an annulus containing the unit circle.
Since zmi1 = €2 zm + 0(|zm|), the disks centered at zm of radius
p[zml, n < m < n+ N, cover an open annulus containing z, and 2,41
for n large. Hence Uf™(V) contains a punctured neighborhood of 0,
and 0 is an isolated point of OU. But then Theorem I1.6.2 implies
that f is conjugate to a rotation about 0, contradicting f"(z) — 0.
We conclude that f/(¢) cannot be irrational. O

Proof of Theorem 2.1 ( continued). The proof is now complete, in
view of the following observations. Since R™ has degree > 1, no
power of R can coincide with the identity, and case (2) of Lemma
2.3 is ruled out. Since J has no isolated points, case (5) of Lemma
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2.3 is also impossible for R. Finally, since there are no attracting
periodic points in 7, Lemma 2.4 produces a parabolic fixed point in
OU whenever f"(z) — 0U. O

EXAMPLE. Suppose R is a finite Blaschke product of degree d > 2.
We have seen in Section III.1 that the Julia set [J of R is either the
entire unit circle or a totally disconnected subset of the circle. There
are now four possibilities. If R has an attracting fixed point on 0A,
or if R has a parabolic fixed point on 0A with only one attracting
petal, then J is totally disconnected. If R has an attracting fixed
point ¢ € A, then 1/ € C\A is also an attracting fixed point,
and J separates the basins of attraction, so J = 0A. The only
remaining possibility is that R has a parabolic fixed point on A with
two attracting petals, in which case again J = 0A. One can check
that each of these four cases already occurs for Blaschke products of
degree two. In all cases, the periodic points of R that are not fixed
are repelling.

3. The Wolff-Denjoy Theorem

Before leaving this area let us prove the following beautiful related
theorem of J. Wolff (1926) and A. Denjoy (1926). This brief proof
was discovered by A.F. Beardon (1990).

THEOREM 3.1. Let f : A — A be analytic, and assume f is not an
elliptic Mobius transformation nor the identity. Then there is o € A
such that f"(z) — «a for all z € A.

Proof. The theorem is easy if f is a Mdbius transformation, and so
we assume that f is not an isometry with respect to the hyperbolic
metric, and further that f(0) # 0. If the orbit of 0 visits any compact
set infinitely often, Lemma 2.2 provides a fixed point in A. Thus we
may assume that the orbit of 0 accumulates on A. The problem is
to show that the orbit can accumulate at only one point a of 0A.
This is again easy if f extends continuously to 0A. The main point
of the theorem is that no continuity is assumed.

Define f.(z) = (1 —¢)f(z), which maps to a compact subset of A.
Let z. be the fixed point of f., and let D, be the hyperbolic disk
centered at 2. with radius p(0, z¢). Since f. is contracting, f.(D.) C
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D.. Now D is a euclidean disk with 0 on its boundary. Any limit D
of the D.’s is a euclidean disk with 0 on its boundary, and f(D) C D.
Thus the point of tangency of D and 9A is the only possible limit
point on OA of the orbit of 0. O

Another approach to the Wolff-Denjoy theorem provides an illu-
minating application of the Herglotz formula. We replace A by the
upper half-plane H. We are now considering f = u+iv as a mapping
of H to itself, with v = Im f > 0, and we must show that either every
orbit tends to 0o, or else every orbit is bounded. The Herglotz repre-
sentation of the positive harmonic function v in the upper half-plane
is

v(z,y) =cy+ y/oo dos) y >0, (3.1)

o (T —8)2+y?
where ¢ > 0 and o is a positive measure satisfying

/+oo do(s) _
—00 1+ 82

We may assume o # 0.

Suppose ¢ > 1. From (3.1) we have v(z,y) > y, so that the half-
planes {y > yo} are invariant under f. These correspond to the
invariant tangent disk D to OA in the preceding proof. Let zn, =
Zn + iy, be an orbit. Then either y, increases to +00, or else yn
increases to some finite limit value yoo, in which case (3.1) shows
that |z,| — co. In any event |2z,| — occ.

Now suppose 0 < ¢ < 1. In this case orbits are bounded. To see
this, we use the Herglotz formula for f,

+ b, z € H,

where b is real. The problem is to obtain an estimate of the form
|f(2) — cz| = o() for large |z|. This can be done by expressing f as

fz) = CZ+/|S.2A Liz—ﬂda(sH/iii_(S_zH,
= CZ+Z/\5|ZA£SU(TS)Z_)+O(1)

as |z| — oo and by estimating carefully the integral that appears
here.
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Critical Points and
Expanding Maps

Critical points and their forward orbits play a key role in complex
dynamical systems. The forward orbit of the critical points is dense
in the boundary of any Siegel disk and Herman ring. If the critical
points and their iterates stay away from the Julia set, the mapping is
expanding on the Julia set, and the Julia set becomes more tractable.

1. Siegel Disks

Let C'P denote the (finite) set of critical points of R. The postcritical
set of R is defined to be the forward orbit U,>oR™(CP) of the critical
points. We denote by C'L the closure of the postcritical set of R. This
set is important because on its complement all branches of R™",
n > 1, are locally defined and analytic.

As we have already seen for polynomials (Section III.4), many
basic properties of the dynamics and structure of 7 are determined
by the critical points and the postcritical set. By Theorems I11.2.2
and II1.2.3, each attracting and parabolic cycle of components of
the Fatou set F contains a critical point. Siegel disks and Herman
rings contain no critical point, however in a certain sense they can be
associated to critical points. We begin with the following theorem.
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The proof is essentially that of Section 31 of [Fa2] and predates the
establishment of the existence of rotation domains.

THEOREM 1.1. IfU is a Siegel disk or Herman ring, then the bound-
ary of U is contained in the closure of the postcritical set of R.

Proof. Let U be a rotation domain that is invariant under R, and
suppose that C'L does not contain 9U. Let D be an open disk disjoint
from CL which meets OU. We assume also that D is disjoint from
some open invariant subset V # 0 of U. Define f, to be any branch
of R™™ on D. Since the f,’s omit V, they form a normal family
on D. Now R is one-to-one on U, so there are other components of
R~1(U). Since inverse iterates of any fixed point of J are dense in
J, there is for suitable m > 1 a component W of R~™(U) distinct
from U that meets D. If z € DN W, then fj(z) and fi(z) belong
to different components of F for j # k, or else they would belong
to a periodic component, which could not be iterated eventually to
W then U. Hence fi(z) tends to J for z € DNW, and since J has
no interior, any normal limit of the fj’s is constant on D N W. On
the other hand, since the f’s are rotations of U, any normal limit is
nonconstant on D N U. This contradiction establishes the theorem.
O

THEOREM 1.2. If the postcritical set of R is finite and there are no
superattracting cycles, then J = C.

Proof. Siegel disks and Herman rings require that CL be infinite,
“since CL is dense on the boundary. So does a parabolic component,
since it contains a critical point and the iterates of this point are
distinct. According to the remark after Theorem II.2.4, an attract-
ing component that is not superattracting has a critical point with
infinite forward orbit. Thus if C'L is finite, the only possibility for a
periodic component of F is a superattracting cycle. By hypothesis,
there are no such components, and so F is empty and J = C.O

ExAMPLE. Take R(z) = 1 — 2/z%. The critical points of R are 0 and
00, which are iterated as follows:

0—-o00—1—>-1—>-1—---

Thus R can have no superattracting cycles, and J = C.
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THEOREM 1.3. If there are two completely invariant components of
F, then these are the only components of F.

Proof. As remarked earlier (in the proof of Theorem IV.1.1), each
completely invariant component of F contains d — 1 critical points,
and there are no other critical points. Since rotation domains have
no critical points, each completely invariant component is attracting
or parabolic. Moreover, the iterates of each critical point tend to an
attracting or parabolic cycle. In view of Theorem 1.1, there can be no
Siegel disks or Herman rings, nor can there be other parabolic or at-
tracting components, since they would require further critical points.
Thus the completely invariant components are the only components

of F. O

We show in Section V1.4 that if there are two completely invariant
components of F, one of which has an attracting fixed point, then the
Julia set J is a simple closed Jordan curve. It follows from Theorem
VI.2.1 that if the two completely invariant components both have
attracting fixed points, then J is a quasicircle.

EXAMPLE. For 0 < b < 1, the function R(z) = 2/(22 —bz+1) has a
parabolic fixed point at z = 0 with multiplier +1 and an attracting
fixed point at b with multiplier 1 — 2. The attracting petal at 0 and
the immediate basin of attraction at b contain the critical points —1
and +1, respectively. Since R has degree two and is two-to-one on
each immediate basin of attraction, each immediate basin is com-
pletely invariant. By Theorem 1.3, there are no other components of
F. As mentioned above, J is a simple closed Jordan curve, passing °
through 0 and oco. For b = 0, we have only the parabolic fixed point
at 0, which has two completely invariant attracting petals. The re-
spective petals include the right and left half-planes. Since the Julia
set separates the petals, it coincides with the (extended) imaginary
axis.

The classification theorem shows that the iterates of any point of
F either remain in a compact subset of F or converge to a parabolic
cycle in J. It follows that the boundary OU of any Siegel disk U
lies in the closure of the forward orbits of those critical points that
lie on J. We claim that in fact there is a single critical point in
J whose forward orbit is dense in OU. Indeed, since there are only
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"7t Critical point
7/ \

FIGURE 1. Iterates of a critical point delineate a Siegel disk.

finitely many critical points, there is a critical point ¢ € J whose
forward orbit is dense in a relatively open subset W # 0 of OU.
Replacing W by UR™(W), we can assume that W is invariant under
R. Let ¢ : A — U be a conjugation of multiplication by A on A
and R on U. Let S be the set of ( € A at which ¢ has a radial
limit belonging to W. Since W' is open and nonempty, S has positive
length on A, and further S is invariant under the rotation ¢ — A(.
If o is any point of Lebesgue density of S, then so is each rotate
A"(o, and evidently every point of A is a point of Lebesgue density
of S, so that S has full measure. It follows that W is dense in 90U,
and the claim is established.

ExAMPLE. Consider P(z) = A(z — 22/2) where A = exp(2mi(v/5 —
1)/2). The golden mean (v/5 — 1)/2 is a favorite choice of rotation
angle for obtaining computer-generated pictures of Siegel disks. From
its continued fraction expansion
V-1 1
2 1
1+ 1+---

it is the worst approximable number in the sense of Diophantine ap-
proximation (see p. 164 of [HaW]). By Siegel’s Theorem 11.6.4, the
fixed point 0 of P is the center of a Siegel disk. Figure 1 shows 20,000
iterates of the critical point 1 under P, which delineate the Siegel
disk. (A similar picture of a Herman ring is given later in Section
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FIGURE 2. Siegel disk and enlargement at critical point.

VI.3.) On the left of Figure 2 is the filled-in Julia set for P, and on
the right an enlargement around the critical point 1. An interesting
question concerns whether the critical point is an accessible bound-
ary point of A(oco) or not, that is, the end of a curve in A(0o). This
seems to be the case in Figure 2.

Let R(z) = Az+az2?+ -+, where 0 < |A| < 1, and suppose z = h(()
conjugates the multiplication ¢ — A¢ to R(z). If ¢ is Koenigs’ coor-
dinate function (appropriately normalized), then h is the branch of
¢~ ! mapping 0 to 0. Schroder’s equation for the conjugation assumes
the form

h(¢/N) =RNAQ), Kl <e (1.1)

Since |A| < 1, we can use this formula to continue h until we meet a
singularity of R~!. Thus there is a critical point of R on the boundary
of the domain corresponding to the largest disk on which the conjuga-
tion holds (see the discussion in Section II1.4). Using (1.1), it is easy
to see that the boundary of this domain is an analytic curve except at
the critical point. Here there is a corner of angle m/m, where m —1is
the order of the critical point. For Py(z) = A(z — 22/2) with [A| < 1,
the angle is 90°. On the other hand, for A = exp(2mi(v/5 — 1)/2)
the angle seems to be very close to 120° (see Figure 2, and also
the approximation on p. 561 of [MaN]), so there is some sort of
discontinuity here. No rigorous results exist on this phenomenon.
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Since Py’s corresponding to Siegel disks are obtained as limits
of Py’'s with |A\| < 1, it is natural to hope that the critical point
stays on the boundary of the Siegel disk, as it is the largest disk on
which the conjugation holds. M. Herman (1985) has proved this for
Diophantine numbers, and he has also shown (see [Do3]) that there
are \'s for which the critical point is not on the boundary of the
Siegel disk (even though the boundary is a quasicircle). We will not
prove Herman’s theorem, but we give instead an elementary proof
that there is a critical point on the boundary for almost all quadratic
polynomials with a Siegel disk.

THEOREM 1.4. Consider Py(z) = Mz — 2%/2), A = e®. Then for
a.e. 0, a Siegel disk exists and contains the critical point z = 1 on
its boundary.

Proof. We already know (Theorem 11.6.4) that the conjugation exists
for a.e. 8, but we give a simpler proof for this case, due to Yoccoz.
The proof of the theorem itself is a continuation of Yoccoz’ proof
(due to L. Carleson and P. Jones; see [Do3)).

For 0 < |\ < 1, consider the conjugating map h(¢, ) for Py,
normalized so that h(C, ) is univalent for |¢| <1 and h(1,) is the
critical point 1 of Py. Write

RGN = a(AN)C +aa(NC+---, (<1, 0<Al <L

Since h omits 1, the Koebe one-quarter theorem gives |R (0, )| =
la1(A)] < 4. This implies that h(¢,)) is an equicontinuous family
of univalent mappings, and if we adjoin the function 0, we have a
compact family. We study the behavior of h(¢,\) as |A| — 1.

Let ¢y be Koenigs’ coordinate function, normalized by ¢)(0) = 1.
Then ¢, depends analytically on A. Since conjugating functions are
unique up to dilations, and since h~1(1,A) = 1, we have h=Y(z,A) =
oa(2)/pa(1). Thus h~!, and also h, depend analytically on A. The
coefficient estimate of Theorem 1.1.8 gives [ax(A)| < ek?|la;(N\)] <
4ek?, so each ai () extends analytically to 0, and the series expansion
extends h analytically to the bidisk |¢| < 1,[A| <1. Furthermore, the
coefficient estimates, or the distortion theorem, show that for each
fixed ¢, h(C, ) is bounded in X. (It is easy to show that |h| < 4.)

The analyticity of (¢, \) in A can also be seen in a more ele-
mentary way, following Yoccoz, by considering the sequence of poly-
nomials Qn(A) = A"PR(1). Thus Q1 = 1/2, Q2 = 1/2 — /8,
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Q3 =1/2—X/8—)A2/8+)3/16 —A*/128, ..., and in general Qn41 =
Qn — A" 1Q2 /2. One shows directly that |Qn(A)| < 4 for [A] < 1,
and Qu () — a1(}).

Let E be the set of e € A such that a;(\) — 0 as X — €.
Then E has zero measure. (This is an elementary fact, which can be
proved by applying Fatou’s lemma to the integrals of log |lay (rei)|
as 7 — 1.) Suppose e ¢ E. Choose A\; € A such that Ay — e and
a1(Ax) — a # 0. Let ¥(¢) be any limit of the univalent functions
h(C, Ax). Then '(0) = a, and 1 is univalent. The functional equation
for the conjugation h is

h()‘<7)‘) = P)\(h(C,’\))a ‘C’ <1, |’\| < 17
and passing to the limit we obtain

W(e¥) = Pa(¥((), KKI<1

Thus there is a Siegel disk centered at 0 for P,.s, and we have Siegel
disks for almost all 6.

Now conjugations are uniquely determined by ¢'(0) = a, so that
h(¢, k) actually converges normally just as soon as M — €¥ €
OA and a;()\) converges. In particular, if a;(\) has a radial limit
ay(€) # 0, then the conjugations h((, A) have a radial limit, which
we denote by h(C,e?). It determines a Siegel disk for P.s.

We now want to prove that the critical point 1 remains on the
boundary of almost all the Siegel disks. We study the functions

u(r, ) = log AN <1, 0<r<l

1
|h(,r7 >‘) - 1| ,
For r fixed, u is harmonic for A in A and bounded below. By our
discussion of the conjugation for |A| < 1 preceding the statement of
the theorem, we know h maps A onto a smooth domain with a /2
corner at the critical point 1. This implies

1 1
r,A) > =lo + C
u(r,A) > 5 log 37—+ Co
for all 7 > 7()). In order to place the critical point 1 on the boundary
of the Siegel disk, we want to show that 1 is a limit point of h(r, ')
as r — 1. For this, it suffices to show lim sup u(r, 619) = 00. Thus the
estimate above is what we need, except that it is not uniform in A.
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For ) fixed, 0 < |A| < 1, the function 1 — h(z, \) can be expressed
as the quotient of two functions in S, namely, h(z,)/a1(X) and
h(z,\)/la1(A)(1 — h(z,))]. The upper and lower estimates in the
distortion theorem (Theorem 1.1.6) then yield

ST ) N A ¢ St )

e I (I

Hence

u(r,A) < 2log + log 4.

1-r
This estimate persists for the radial boundary values at A = e'.
Fix 0 < ¢ < 1/2, take a sequence 7y — 1, and define

; 1
Ay ={0: lu(rg, )| > clog
1 — Tk

It suffices to show that Ax has full measure for all N. Indeed, then
NAp has full measure, and for almost all & we obtain a sequence of
r's tending to 1 such that h(r,e*) — 1.

For arbitrary 6y consider A = pe?o. Fix M large, and let I be the
interval of length M (1 — |A|) centered at e . The Poisson kernel
Py(6) = (1 — |A2)/]e® — X|? satisfies

for some k > N}.

de |[ENI| ¢
Py(0)— < (M 2
[ PO <a®n=r=+ 5
for any subset E of A, where | - | denotes angular measure. Choose
k so large that k > N and 7 > (). From the Poisson formula we
obtain

%bg 400 < ulrk ) = /PA(O)u(rk,ew)gg
< clog 1 —1Tk + " P,\(¢9)u(7°k,e’.e)g—fr
< clog T + 2log 1 ka /AN P,\(H)gg +log4
< log p— [c—{- 201(M)|—£\|%T—I—‘ + %&—2} + log 4.
Solving for |Ax N I|/|I| and letting 7, — 1, we obtain
A
| A(ITI’ z QCle)(%—c—g]\cZ?> 26 >0

for some suitable cg. Hence Ay has positive density everywhere. By
Lebesgue’s differentiation theorem, Ay has full measure. O
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2. Hyperbolicity

A rational function R is hyperbolic (on J) if there is a metric o (z)|dz|
smoothly equivalent to the spherical metric in a neighborhood of 7,
with respect to which R is expanding. If co ¢ 7, this means that

o(R(2))|R(2)| 2 Ao(2), z€J, (2.1)
for some fixed A > 1. Then the identity

o(RM(2))(R")(2) _ Ty o(R*(2))
o(2) i o(RA(2))

shows that o(R"™(2))|(R™)'(z)| > A™0(2) for all n > 1.

R'(R*(2))

LEMMA 2.1. Suppose co ¢ J. Then the following are equivalent.
1. R is hyperbolic on J.

2. There exist a > 0 and A > 1 such that |(R™)'| > aA™ on J for
alln > 1.

3. There exists m > 1 such that |(R™)'| > 1 on J, that is, such
that R™ 1is expanding on J with respect to the euclidean metric.

Proof. To show (1) implies (2), set a = mino/max o and apply the
estimate preceding the lemma. Clearly (2) implies (3). If (3) holds,
then

o(2) = |[R'(R™2(2))|/ ™ R (R™%(2)) /™ - |R ()| '~/
defines a metric for which R is expanding. O

From condition (3) of the lemma, it is clear that if R™ is hyperbolic
on J for some n, then so is R, as are all iterates of R.

+d

EXAMPLE. R(z) = 2™* is expanding on J = {|z| = 1}, since

|R'(z)| =d on J.

Note that if R is hyperbolic on 7, there can be no critical points
on J. This rules out the case J = C, and it also rules out Siegel disks
and Herman rings. Furthermore, R can have no parabolic cycles, as
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these have multipliers of unit modulus. Thus if R is hyperbolic on J,
all components of F are iterated to attracting cycles. The converse
is also true.

THEOREM 2.2. The rational function R is hyperbolic on J if and
only if the closure of the postcritical set of R 1is disjoint from J.
This occurs if and only if every critical point belongs to F and 1is
attracted to an attracting cycle.

Proof. Since the total multiplicity of the critical points is 2d — 2,
there are at least two critical points. If there are exactly two, then
each has multiplicity d — 1, and by placing these at 0 and oo, we see
that R is conjugate to 24 or z~%, hence hyperbolic.

We assume then that there are at least three critical points and
that CL N J = 0, so that each component of F iterates to an at-
tracting cycle. Then D = C\CL is a hyperbolic domain, and all
branches of R~! are analytically continuable along any path in D.
Let f be a lift to the universal covering space D = A of a locally
defined branch of R™!. Since the inverse iterates R7¥(CL) are dense
in J, R~Y(CL) includes points of D, and these points are omitted
by any branch of R-1. Hence f is a strict contraction with respect to
the hyperbolic metric of D, and branches of R™! are locally strict
contractions with respect to the hyperbolic metric of D. Thus R is
strictly expanding with respect to the hyperbolic metric on D, and
R is hyperbolic on J. O

THEOREM 2.3. If R is hyperbolic, then J has zero area.

Proof. Assume oo ¢ J. Let V be an open set containing J, invari-
ant under R—1, on which 1/R’ and R” are bounded, and on which
|(R¥Y| > a/cF for some 0 <c<1.If 2 and w lie in a disk in V, and
if R~* is any analytic branch on the disk, then

R (z) — R™*(w)| < %cklz —wl.

Hence

R'(R7*(z _ B
-R_’((_R:?((—wl))s < Cy|R k(z) - R k(w)\ < Clck|z —w|.
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Using the chain rule, we obtain

(R™'w) _ T RE*D) 01w ks — w
Fre L R L0l eIon)

= 1+ 'Z - ’lU'O(l),

where the bounds are independent of z,w, n, and the branch of R™".
This shows that branches of R~™ are uniformly close to being affine
on small disks.

Now fix € > 0 small, and note that disks A(z,¢), with z € J,
have at least a fixed proportion (say 6 > 0) of their area in F. Let
20 € J. Choose n large, and set z, = R"(z0). Now R™"(A(zn,€))
is approximately a disk with at least /2 of its area in F, and its
diameter tends to 0 as n — oo. Hence 29 cannot be a point of full
area density of J. By the Lebesgue differentiation theorem, J has
zero area. U

It is conjectured that for rational maps either J has zero area
or J = C. There is a strong analogy with Kleinian groups, which
was recognized early by Fatou (1906) and which is still not com-
pletely understood (see [Su2], [ErL]). The corresponding conjecture
for Kleinian groups is that the limit set of a Kleinian group has zero
area.

3. Subhyperbolicity

It is useful to consider a slightly weaker form of the notion of an
expanding map. Assume oo ¢ J. Consider distances measured by
o(z)|dz| where ¢ > ¢ > 0, as above, and denote the corresponding
distance function by dy(z1,22). We allow o to blow up at a finite
number of exceptional points a1, ...,aq but assume

C
<L o

for some 3 < 1, so that dy(z,a;) < co. Under these conditions, we
say o is an admissible metric. Note that

clz —w| <dy(z,w) < Clz — w|!P
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for z and w near J. We call R subhyperbolic if R is expanding on J
for some admissible metric, that is, there is A > 1 such that (2.1)
holds in a neighborhood of J.

If R is expanding on a neighborhood of J with respect to any
metric (equivalent to the euclidean metric), then there are no neutral
periodic points in J. Indeed any periodic point zo then has an open
neighborhood that is mapped to a compact subset of itself by the
appropriate power R~™, and this implies |(R™)(20)] > 1. In the
subhyperbolic case, there are further restrictions.

THEOREM 3.1. Suppose J # C. Then R is subhyperbolic if and only
if each critical point in J has finite forward orbit, while each critical
point in F is attracted to an attracting cycle.

Proof. Suppose R is subhyperbolic. The condition (2.1) shows that
each critical value in J is an exceptional point for the metric o, as
is any iterate of an exceptional point. Hence CL N J is finite. By
Theorem V.1.1, there are no rotation domains in F. By the remark
preceding the theorem, there are no parabolic periodic points. We
conclude that F consists only of basins of attraction for attracting
cycles.

For the converse, assume the condition on C'L holds. Then all the
components of F are associated with attracting cycles, and there is
an open neighborhood V' of J such that R Y(V)cVand VNCL C
7. We are assuming oo ¢ J. Let {ai,...,a,} be the critical values
in J and their successive iterates. We build an N-sheeted branched
covering surface W over V branched over the a;’s so that any branch
of R™!, defined locally from W to W, can be continued analytically
along any path in W. For this there should be N/n(a;) branch points
over aj, each of order n(a;). The integers n(a;) are chosen so that,
if a € R™!(a;) and v(a) is the order of R at a, then n(a;) is an
integral multiple of n(a)v(a). A moment’s reflection shows this is
always possible, the key point being that the cycles in CLNJ contain
no critical point or we would have a superattracting cycle. (If for
instance there is only one critical point in J, of order n, take W to
be n-sheeted, with a single branch point of order n over each a;.)

The universal covering surface of W is the open unit disk A, by
Theorem 1.3.3. Any locally defined inverse branch of R~ on W lifts
to an analytic map of A onto a proper subset. Hence branches of R~}
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are locally strict contractions with respect to the hyperbolic metric
of W.

Parametrize the kth sheet of W by z and express the hyperbolic
metric there as pi(z)|dz|. Define o(z) = ¥ px(2). Then o is smooth
except at the branch points, and o(2) ~ |z — aj|~1+1/™%) near a;.
The branches of R~! are strictly contracting with respect to each
pr(z)|dz|, hence with respect to o(z)|dz|, so R is strictly expanding.
O

The inverse R~! of R remains strictly contracting with respect to
any small perturbation of the hyperbolic metric on W. If we perturb
p to be a constant times |dw| at branch points, where w is the local
coordinate satisfying z —a; = w”(@) | and then sum over sheets, we
obtain an admissible metric o for which R is strictly expanding, such
that o is smooth away from the a;’s, and o(2) is a constant multiple
of |z — a;|71+1/¥(%) near aj.

ExAMPLE. Consider P(z) = 22 + 4. Our metric should have singu-
larities on the postcritical orbit i — ¢ — 1 — —i. Define

1

NESUERI GRSV

so that o(P(2)) = |2|7}2% + 1]71/2|22 4 2i|~Y/2. The inequality to be
proved, o(P(2))|P'(z)| > Ao(z), can be simplified to [z + (i — 1) <
4/A?, which should hold for z near J. If z € J, then |2| < /3, and
then |z + (i — 1)] < V3 + V2 < 3.2. So the inequality holds on J

with A = \/4/3.2 > 1.1.

In Section VIL3 we extend the local affine estimate used in the
proof of Theorem 2.3 to subhyperbolic maps. From this it follows
that J has zero area also when R is subhyperbolic.

o(z) =

4. Locally Connected Julia Sets

In this section we return to the case where R = P is a polynomial
of degree d > 2. Recall (Section II1.4) that A(co) is connected and
J = 0A(oc0). We are interested in determining when J is locally
connected.
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THEOREM 4.1. If the polynomial P is subhyperbolic on J, and if J
is connected, then J is locally connected.

Proof. Since J is connected, A(co) is simply connected. By Theo-
rems 3.1 and T1L.4.1, A(co) contains no (finite) critical points. The
conjugation of P to (% at oo extends to an analytic map ¢ : A(oc0) —
{|¢| > 1} satisfying p(P(2)) = ¢(z)%. For fixed R > 1 we parametrize
closed curves 7y, by

(€)= o H(RY T E?),  0<O<2m n>1

The ~v,’s tend to J as n — 00, and P is a d-to-1 cover of y,4+1 over
An. Let o be an admissible metric for which P is strictly expanding
near J. If 0 < ¢ < 1 is the contraction constant for P! near J,
then for n large,

da(')’n(eie)a'yn+1(ew)) < Cda(P('Yn(eie))aP(7n+1(€i9)))
Cda('Yn—l(ewd),’Yn(eied)).

This shows that 'yn(ew) converges uniformly as n — oo. The limit
function maps the circle continuously onto 7. Hence J is locally con-
nected, and in fact the conformal map ¢~ ! extends to a continuous
map of {|¢| > 1} onto A(c0)UJ. U

THEOREM 4.2. Suppose P is a polynomial with finite postcritical set,
such that no finite critical point is periodic. Then the Julia set J 1s
a dendrite, that is, a compact, pathwise connected, locally connected,
nowhere dense set that does not separate the plane.

Proof. No components for F except A(oo) are possible, and Theorem
4.1 applies. O

EXAMPLE. If P(z) = 22 — 2, then 0 — —2 — 2 — 2 — -+, 50 the
Julia set is a dendrite. In fact, we already know J = [-2,2]. A more
interesting case is P(z) = 22 + 4, where 0 is iterated to a cycle of
length two: 0 — & — i—1 — —i — i—1 — ---. See Figure 3.

A crucial ingredient of the proof of local connectedness is the exis-
tence of an expanding metric. When there are parabolic cycles, such
a metric cannot exist in a full neighborhood of the Julia set. How-
ever, under certain conditions such metrics exist in the part of A(o0)
bordering J. We follow Exposé No. X of [DH2].
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FIGURE 3. Julia set for 22 + 1.

For simplicity, suppose there is a parabolic fixed point 29 € J
and that the forward iterates of each critical point either tend to
an attracting cycle or to zp through an attracting petal. In view of
the description in Section II.5 of the behavior of P near a parabolic
fixed point, we see that we can construct an open set U containing
J\{z0} such that U is invariant under branches of P!, UN A(o0) =
A(0, R)N A(o0) for some large R, and U NA(20, €) is a finite union of
narrow cusps terminating at zp and tangent to repelling directions.
For € > 0 sufficiently small, P is expanding with respect to the
euclidean metric |dz| in each of these cusps, as can be seen from a
simple calculation. Curves in A(c0) terminating at zyp do not have
finite length with respect to dpy. To remedy this, we aim to modify
dpy to be a multiple of |dz| near zg. This is done as follows.

Choose M so large and ¢ so small that P(z) is expanding in a
neighborhood of any point of P~!(A(zg,e)) N U from the metric
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dpy to the metric M|dz|. Set V' = P~1(U), an open set containing
J\{z0} on which P is locally expanding with respect to dpy. De-
fine a metric do(z) on V by setting do(z) = dpy(z) on V\A(z0,¢)
and do(z) = min{dpy (z), M|dz|} on V N A(zg,¢€). The condition
on M guarantees that P is locally expanding with respect to o on
V\A(zp,¢). Since P is expanding with respect to both M|dz| and dpy
in VNA(zo0,€), it is expanding with respect to their minimum, hence
it is locally expanding on V with respect to do. Integrating along
paths in V and taking an infimum, we obtain a uniformly bounded
metric dy(z,w) on V for which P is strictly expanding (though not
uniformly expanding). Such a metric can also be constructed when
there are several parabolic cycles, and even when there are critical
points on J so long as they are strictly preperiodic, as in Section 3.
With such an expanding metric in hand, we obtain the following.

THEOREM 4.3. Let P be a polynomial with connected Julia set J,
such that each critical point of P belonging to J is preperiodic. Then
J s locally connected.

Proof. Assume for convenience there is only one parabolic point 2o,
with p invariant petals. Let do(2) be as above. Let the curves v be
as in the proof of Theorem 4.1, so that P is a o-expanding map of
each v, onto v,—1. Let a;, be the geodesic arc in A(oo) from v (€?)
to 7n+1(ei9), and for 1 < j < n, set ap—j = Pi(ay,). Let € > 0 be
small. Suppose first that more than 3n/4 of the a;’s meet A(zo,€)-
We arrange these in k blocks of consecutive iterates, with m; arcs in
the jth block. Then k < n/4 and my +---+mg = 3n/4. Estimating
with the aid of the Fatou coordinate for a repelling direction at
29, we see that for any fixed 0 < § < 1/p, the o-length of o is

magnified by a factor at least (’)(m}”) over the jth block. Thus the

o-length of o, is at most O((ma - -mk)’(H&)) times the o-length of
a1. Now my - --mg is minimized, subject to the constraints m; > 1
and mj + - - - + my fixed, when all the m;’s except one are 1, with
minimum m; +- - -+mg — (k—1) > n/2. Thus the o-length of o, is at
most O(n'(1+‘5>) times the length of a;. Suppose, on the other hand,
that at least n/4 of the ay’s lie outside A(zp,€). On these a;’s, P is
uniformly expanding, so the o-length of a,, is at most C~—™/* times
the length of a1, where C > 1is an expansion constant. In any event
we obtain da(fyn+1(ei9),'yn(eio)) = O(n~(119), the estimate being
uniform in 0. It follows that the curves 7, converge uniformly in
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the o-metric. Since dy(zn, wn) — 0 implies |z, — wy| — 0, the v,’s
converge also uniformly in the euclidean metric, and the limit J is
locally connected. O

EXAMPLE. Suppose the Fatou set of the polynomial P consists of
two completely invariant components A(oco) and W. Then all d — 1
finite critical points of P belong to W, and the preceding theorem
applies. The Riemann map from A to A(co) extends to map HA
continuously onto J. Since J is adherent to W, the Riemann map
must be one-to-one on dA, and J is a simple closed Jordan curve.
This applies for instance to the polynomial 2% 4 1/4, which has a
parabolic fixed point at 1/2 with one attracting petal. The Julia set
of 2% 4 1/4 is the cauliflower set in Section VIIL.1, Figure 5.

Lest the impression be left that 7 is always locally connected, we
prove the following theorem of Douady and Sullivan (cf. [Sul]).

THEOREM 4.4. Suppose the quadratic polynomial P has an irra-
tionally neutral fized point that does not correspond to a Siegel disk.
Then the Julia set J is a connected but not locally connected set.

Proof. We use the result, proved in the next chapter (Theorem VI.1.2),
that a polynomial of degree d has at most d — 1 attracting or neutral
cycles (not including o). In the case at hand, there are no other
attracting or neutral cycles than the irrationally neutral fixed point,
so that F = A(oc). We use also the fact that A(oo) is simply con-
nected. By Theorem III.4.1, this is equivalent to the boundedness of
CL. This in turn follows from Theorem VIII.1.3, and it can also be
established by a direct argument.

We assume z = 0 is the irrationally neutral fixed point. Let ¢ be
the conjugation of P to ¢? at co. Since A(co) has no finite critical
points, ¢ extends to a conformal map of A(co) onto {|¢| > 1}, whose
inverse 9 : {|[¢| > 1} — A(oo) satisfies P(¥(C)) = ¥(¢?).

Suppose 9 extends continuously to {|¢| > 1}. Then ~1(0) is a
closed subset of the unit circle {|¢| = 1} of zero length. Let n > 0 be
small, and let D,, denote the set of z € A(c0) such that z = ¢(() for
some ¢ € A satisfying dist(¢,~!(0)) < n. Evidently D, is open, and
the continuity of ¢ shows that D,, shrinks to {0} as n decreases to
0. Thus we can assume that the branch f of P~! satisfying f(0) = 0
is defined and analytic on a disk containing D,,.
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We claim that D, is invariant under f. Indeed, let 29 € Dp, and
write zo = ¥(Co). Choose &, |€o| = 1, such that (&) = 0 and
|¢o — &0l < - Let 21 = f(20). Then z; = ¥(C1), where G=( 0=
VCo. Set &1 = V&, where we use the same branch of the square root.
Since (1 and &; are approximately in the same direction, |(+&1] > 1.
Hence |¢1 — £1] < |¢1 — &1llG + &1 = 1 — €] = [Co — &of < - Also
P((&)) = $(&3) = ¥(é) = 0. Hence ¥(£1) is either 0 or —A, and
since & is near (1 and ¥((1) = 21 is near 0, (&) = 0. Thus 21 € Dy,
and D, is invariant under f.

Now D, includes A(o0) N{|z| < §} for some 6 > 0, by the uniform
continuity of 1. Thus if z € A(c0), [2| < §, then all iterates f™(z) are
in Dy,. Since J = 9A(oc0) has no interior points and F = A(00), Dy is
dense in {|z| < 6}. Thus by continuity, f™(z) € Dy for all z,|z| <6,
and all m > 1. By Theorem I1.6.2, f can then be conjugated to
a rotation, hence so can P, contrary to hypothesis. This contradic-
tion shows that ¥ does not extend continuously to {I¢| = 1}. By
Carathéodory’s theorem, J = 0A(00) is not locally connected. O



VI

Applications of Quasiconformal
Mappings

One of the basic ideas behind the use of quasiconformal mappings
is to consider two dynamical systems acting in different parts of the
plane and to construct a new system that combines the dynamics of
both. This procedure is called quasiconformal surgery.

1. Polynomial-like Mappings

Let U; and U, be bounded, open, simply connected domains with
smooth boundaries, such that U; C U,. Let f(z) be holomorphic
on U; and map U; onto Us with d-fold covering, so that f maps
AU, onto AUs, that is, f is proper. Following Douady and Hubbard
(1985), we call the triple (f; Uy, Us) polynomial-like. This name is
motivated by the following.

THEOREM 1.1. If (f; U1, Us) is polynomial-like of degree d, then there
are a polynomial P of degree d and a quasiconformal mapping ¢ with
o(2) = z + o(1) near 0o, such that f = po Poyp™" on Us.

Proof. We construct a Beltrami coefficient (ellipse field) for ¢ as
follows. Take p > 1. Let ®(z) map C\U; conformally to {|¢| > %}
with ®(00) = co. We wish to extend ® to C\U; so that ® maps
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U \U one-to-one smoothly onto {p < |¢| < p?}, so that for z € OU1,
o(2) = (f(2))-

To do this, note that f describes OUz d times as z runs through
dU,, so ® can be defined on dU; and then extended arbitrarily in a
smooth way to Us\U;. We define

| f2), z € Uy,
g(z) - { d 1o (I)(z)d, A Cl\Ul-

Define an ellipse field by making it circles in C\U; and defining it
to be g-invariant on

g " (C\U2).

13

This can be done uniquely as the sets g(U2)\Uz, U2\U1, g Y (U2\U1),
..., are disjoint, and each is mapped d-to-1 onto the preceding one by
g. Furthermore, the circles are distorted only on the first iteration
(inside U2\U1), since g = f is analytic in Uy. The eccentricities of the
ellipses do not change after the first iteration and so are uniformly
bounded. Hence |u| < k < 1. We define p = 0 on any remaining part
of C.

Let ¢ solve the Beltrami equation corresponding to p. Then P =
pogop~! maps infinitesimal circles to circles and is a d-to-1 mapping,
hence a polynomial of degree d. Finally, g = ¢ loPoyp=finUj,
as desired. O

We can use Theorem 1.1 to prove the statement used in the proof
of Theorem V.4.4.

THEOREM 1.2 (Douady). A polynomial P of degree d has at most
d — 1 nonrepelling cycles in the finite plane.

Proof. Let M be the set of points occurring in nonrepelling cycles.
By Theorem II1.2.7, M is finite. Choose a polynomial @ such that
Q(z) =0forall z € M, and 3_Re (Q'(2;)/P'(z;)) < 0 for all neutral
cycles {21, ..., zm}. To see that this is possible, note that P'(z;) #0
and that the conditions on Q are linear, so the conditions can be
satisfied if the degree of Q is large enough. Suppose € > 0 is small,
and define f = P + Q. Then since @ = 0 on M, the nonrepelling
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cycles of P are also cycles of f, and they must be attracting, since
for any neutral cycle for P,

Slog|f(z)| = 3 log|P'(z)]+ 3 log 1 “%%
= 0—+—EZR€ (IQD—:EZLD +0(e?H) <0
Zj

if € is small enough. Hence all nonrepelling cycles for P are attracting
for f.

Assume P is monic, take p large, and set Uy = A(0,p%), Uy =
f~1(Uy). If € is sufficiently small, then f ~ P ~ z% near {|z| = p},
so f is a d-to-1 proper mapping from U; to Uz, and (f;U1,Uy) is
polynomial-like. We can assume M is included in U;. By Theorem
1.1, f is conjugate to a polynomial S of degree d, and every at-
tracting cycle for f must be attracting for S. By Theorem 111.2.2,
a polynomial has at most d — 1 attracting cycles (not counting 00).
Thus P had at most d — 1 nonrepelling cycles. O

Since oo is an attracting fixed point of order d — 1, Douady’s
theorem above is the same as Shishikura’s theorem mentioned in
Section II1.2 in the case of a polynomial.

EXAMPLE. Suppose P is a quadratic polynomial that has a cycle
corresponding to a Siegel disk, Uy — Uz — -+ — Up — U — -
The components of F in the cycle are mapped one-to-one onto them-
selves by P. Each Uj in the cycle is the image of U;_1 and one other
bounded component V; of F. Each V; has two distinct preimage
components, each of these has two further distinct preimage com-
ponents, and so on, so that the inverse images of each V; form a
tree. By Theorem 1.2, there are no attracting or neutral cycles other
than the Siegel cycle (and oo). From the classification theorem, we
conclude that each bounded component of F is eventually iterated
by P to the Siegel cycle.

2. Quasicircles
A Jordan curve I is called a quasicircle if it is the image of a circle

under a quasiconformal homeomorphism of the sphere. Quasicircles
can be geometrically characterized by the “three-point property”:
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FIGURE 1. P(z) = 2> +1i/2, J is a quasicircle.

there is an M > 0 such that if 21, 22,23 € I" and 29 is on the “shorter”
arc between z; and z3, then |21 — 22| + |22 — 23] < Cla1 — z3|. See
[A2].

THEOREM 2.1 (Sullivan). Suppose that the Fatou set of a rational
function R has exactly two components and that R is hyperbolic on
the Julia set J. Then J is a quasicircle.

Proof. The proof is very similar to that of Theorem 1.1 (see also
the proof of Theorem VIL5.1). Suppose the two components are
D; and Ds. By considering R? if necessary, we may assume each
component is completely invariant. They are simply connected, by
Theorem IV.1.1. In D; construct a curve 2 with no critical points in
the annular domain between 2 and J. Let v1 = R71(72). Since R is
hyperbolic we can assume that vz lies between 71 and J. The domain
between 1 and J corresponds to Ut, the domain between v2 and J
to Us. As before, we construct g; in D1 and the analogous Beltrami
coefficient on D;. We do the same in Do. We set p = 0 elsewhere and
solve the Beltrami equation for ¢. Again Ry = ¢o© goy~!is analytic,
and deg Ry = deg R = d. Evidently Ry has critical points of order
d — 1 at two points, since g1 and g2 do, and hence is equivalent to
»% Thus J is the image of the circle {|z| = 1} under ¢ composed
with a Mobius transformation. U
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EXAMPLE. Suppose P is a quadratic polynomial with an attracting
fixed point. By Theorem II1.2.2 the immediate basin of attraction
A* of the fixed point contains the critical point, so P maps A* two-
to-one onto itself, and A* is completely invariant, as is A(cc). By
Theorem V.1.3 these are the only components of . Furthermore, P
is hyperbolic on J, by Theorem V.2.1. Thus Theorem 2.1 applies,
and J is a quasicircle. An example is shown in Figure 1. This picture
was produced by iterating P and coloring black those points z for
which |P™(z)| <4 for n = 1,2,...,100.

3. Herman Rings

The first examples of Herman rings were produced by M. Herman
(1984), who based their existence on Arnold’s theorem (Theorem
11.7.2). For a > 1 real, consider

R(2) = e¥2%(z —a)/(1 — az).

It is an orientation-preserving homeomorphism of the unit circle,
and it is uniformly close to the rotation z — e2™9 > for large a. Now
the rotation number of R moves continuously with a and 6, it is
increasing in 6, and it converges uniformly to § (mod 1) as a — +o0.
For a fixed Diophantine number «, we can therefore find 6 = 6(a) so
that R has rotation number «. Moreover 6(a) — a as a — oo. Hence
for large a we have R(z) = e*™®z®(z) where ® is arbitrarily close
to 1. The hypotheses of Theorem I1.7.2 are met, and R is conjugate
to a rotation in some annulus containing the unit circle. The circle
is contained in a fixed component U of the Fatou set, and U cannot
be attracting or parabolic (since the circle is invariant) nor a Siegel
disk (since 0 and oo are attracting). Thus U must be a Herman ring.
Actually, from the global version of Arnold’s theorem we obtain a
Herman ring for any a > 1 and any 6 such that R has a Diophantine
rotation number. If for instance a = 4, the finite critical points of R
are the roots of z(z2 — (19/8)z + 1), which are r1 = 0, r2 ~ 0.547,
and r3 ~ 1.828. The first is superattracting, so by Theorem V.1.1,
U must be contained in the closure of the iterates of the second
and third. Figure 2 shows 20,000 iterates of each critical point for a
randomly chosen value 6 = 0.5431245.

We give a second proof of the existence of Herman rings, due to
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FIGURE 2. Iterates of critical points delineate a Herman ring.

M. Shishikura (1987), which transforms a Siegel disk into a Herman
ring with the same rotation number.

THEOREM 3.1. Suppose a rational function R has a Siegel disk, on
which R is conjugate to multiplication by A = e2™8  Then there ez-
ists another rational function with a Herman ring, on which it s
conjugate to multiplication by the same multiplier \.

Proof. Let U denote the Siegel disk of R, say with center 0, and let
R(z) = R(z). Then R has a Siegel disk U with multiplier e 2™ at
0. Thus U and U are conformally equivalent to the unit disk, and R
and R act there by multiplication by e2™ and e 2™ respectively.
For 0 < r.7 < 1 let v C U correspond to a circle {|¢| = 7} via the
conjugating map, and let 5 be an analogous curve in U correspond-
ing to 7. Define an orientation-reversing homeomorphism % from an
annular neighborhood of 7y to an annular neighborhood of 7 so that ¥
in z-coordinates corresponds to the map ¢ — r7/¢ in ¢-coordinates.
Then 9 (y) = ¥, and ¥ (R(z)) = R((z)) for z € .

Extend 1 to be a diffeomorphism from the domain inside v onto
the domain outside 7. We may assume 3(0) = 00 and that v is
analytic in a neighborhood of 0. Define a smooth function g on C
by setting g = R outside v and g = P lo R o v inside 7. These
definitions coincide near 7, so that g is analytic outside a compact
subset of U. Let E be the ellipse field which is circles outside 7y and
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which is mapped to circles by ¥ inside 7. Since R and R are analytic,
this field is invariant under g.

Let ¢ solve the Beltrami equation and observe that Rg = ¢pogop™
is rational (of degree 2d). Let A be the annulus that is the part of U
outside v, and let W = ¢(A). Since g maps A onto itself, Ro(W) =
W, and W is part of a component of F(Rp). This component is either
a Siegel disk or a Herman ring. The first is impossible. Indeed Ry
cannot be normal in either complementary component of W, since
R™ and R™ are not normal outside U and U, respectively. Since the
action of Rg on ¢(7y) is conjugate to the action of R on v, and the
rotation number of R on v is #, the rotation number of Ro on o(7)
is also 0, and Ry must be conjugate to multiplication by e2™® on the

1

Herman ring. O

4. Counting Herman Rings

By means of quasiconformal surgery, Shishikura showed there are
at most d — 2 Herman rings, and this bound is sharp. Here we are
concerned only with showing that the number of Herman rings is
finite.

THEOREM 4.1. The number of cycles of Herman rings of a rational
function of degree d 1s at most 4d + 2.

Proof. The proof is by counting parameters. The number of inde-
pendent quasiconformal deformations of the system to nonconjugate
systems cannot exceed the number of parameters describing the con-
jugacy classes. The line of argument is due to Sullivan (cf. [Do3]),
and it is similar to that used in Theorem IV.1.3.

Let U be a Herman ring, and let E be a compact invariant subset
of U which is conformally equivalent to the annulus {1 < ¢ < R}.
Consider the function v on E which in ¢-coordinates is given by
¢2/|¢|% For 0 <t <1 the ellipse field corresponding to the Beltrami
coefficient tv is invariant under rotation and has major axis parallel
to the direction of rotation. One can argue geometrically that any
solution of the Beltrami equation increases the modulus of the annu-
lus. This can also be seen by noting that a solution in (-coordinates
is given explicitly on the annulus by |¢ |2/ 1-t¢.

Consider N such annuli Uy, ..., Uy from different cycles of Herman
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rings. Define E; and v; as above, and for t € RV satisfying 0 < t; <
1,1 < j < N, define the Beltrami coefficient u; to be tjv; on E;
as above. Extend ¢ to the inverse iterates of the Ej’s so that the
corresponding ellipse field is invariant, and set p; = 0 elsewhere. We
place oo in U7\ E1, and then p; has compact support in C. (This was
our sole purpose in introducing £ above.) Let f; be the normalized
solution of the Beltrami equation. Then R = ftoRo ft_1 is rational
of degree d, and R; moves continuously with the parameter t. Each
fi(U;) is a Herman ring for Ry, for which the modulus is a strictly
increasing function of ¢;. Thus there is an open set W in the positive
unit cube in RN such that the rational functions Ry, t € W, are all
distinct. We parametrize the rational functions by 2d + 1 complex
parameters (coefficients of polynomials), and we obtain a continuous
one-to-one map of W into C2¢+! = R*¥*2. Since topological maps
cannot lower dimension ([HuW]), we obtain N <4d+2. O

5. A Quasiconformal Surgical Procedure

In some circumstances, quasiconformal surgery can be used to con-
vert attracting fixed points to superattracting.

THEOREM 5.1. Let U be a simply connected component of the Fatou
set F that contains an attracting fived point, on which R is m-to-1.
Then there are a rational function Ry, a quasiconformal homeomor-
phism ¢ of C, and a compact subset E of U, such that v is analytic
on U\E, ¢ is analytic on all components of F not iterated to U,
YoRoy™t =Ry on »(U\E), and Ro on ¥(U) is conjugate to ¢™
on A.

Proof. Let 2 be a smooth simple closed Jordan curve in U surround-
ing the critical points of R, such that 71 = R~ !(v2) is a Jordan curve
between 2 and OU, mapped m-to-1 onto 72 by R. Fix p > 0. Define
I to be the conformal map of the inside of 2 onto the disk {|(] < o™}
sending wp to 0, and extend h smoothly to map the annular region
between ~; and 2 homeomorphically to the annulus {p™ < |¢] < p},
so that h(z)™ = h(R(z)) for z € 1. Define g(z) to be R (h(z)™)
inside 71, and set g(z) = R(z) elsewhere in C. Thus g combines the
dynamics of R outside vy and of h=! o h™ ~ (™ inside 72, as in the
proof of Theorem VI.2.1.
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Define an ellipse field to be circles on the part of U outside 71, and
extend it to C to be g-invariant and to be circles outside UR™"(U).
Let ¢ be the solution of the corresponding Beltrami equation. Then
Ry = yogot~! is a rational function, which has the same dynamics
as g. Thus Ry is m-to-1 on ¥(U) and has a superattracting fixed
point as its only critical point in ¢(U), so Ry is conjugate to ¢™. O

Note that the Julia set of Ry is the 1-image of the Julia set of
R, and the dynamics of Ry outside ¢(U) are the same as those of
R outside U. We are now in a position to extend Theorem V.4.3 to
cover attracting fixed points.

THEOREM 5.2. Suppose that each critical point of R on J is strictly
preperiodic. If U is a simply connected component of F that has an
attracting periodic point, then OU is locally connected.

Proof. We may assume U has a fixed point and R is an m-to-1
branched cover of U over itself. Replacing R by the rational function
Ry of the preceding theorem, we may also assume that R on U is
conjugate to ("™ on A. Then we define the curves v, in U exactly as
in the proof of Theorem V.4.1, so that R is an m-fold cover of Yn+t1
over Yn. As in Theorem V.4.3, we have a bounded metric on the part
of U near J for which R is expanding. Now the proof of Theorem
V.4.3 goes through unaltered. O

THEOREM 5.3. If there are two completely invariant components of
the Fatou set, at least one of which has an attracting fized point, then
the Julia set J 1is a simple closed Jordan curve.

Proof. In this case, J is adherent to each component of F,s0 J is
connected. Since F contains all the critical points of R, Theorem 5.2
applies, and J is locally connected. The Riemann map from A to
either component of F extends continuously to A and is easily seen
to be one-to-one on 0A. O

EXAMPLE. For 0 < b < 1, the Julia set of z/(2? — bz +1) is a simple
closed Jordan curve (see the example in Section V.1).

When d = 2, the hypothesis of the existence of an attracting fixed
point in Theorem 5.3 is superfluous. In fact, if R is a rational func-
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tion of degree d = 2, then R has at most one parabolic fixed point
(parabolic fixed points are of multiplicity > 2). So if F has two com-
pletely invariant parabolic components, then they share the same
fixed point, with two attracting petals, the fixed point has multi-
plicity three, and there can be no other fixed points. Now we claim
that if R has degree d = 2 and a single fixed point in C (necessarily
of multiplicity three), then R is conjugate to 2 /(2% + 1), and conse-
quently (Section V.1) the Julia set J of R is a circle in the extended
plane. To see this, we place the fixed point at z = 0 and its other
preimage at 0o, so we have conjugated R to the form z/ (az?—bz+c).
Since the fixed point is parabolic, ¢ = 1. If we place a critical point
at z = 1, we obtain a = 1. Since z/(2% — bz + 1) has a fixed point at
z = b, we have also b= 0.

ExaMPLE. The disguised Blaschke product (3z%+1)/ (22 +3) is con-
jugate to z/(z* + 1), as it has only the one parabolic fixed point at
z=1



VII
Local Geometry of the Fatou Set

We focus on components of the Fatou set that are simply connected,
and we study the geometry and dynamics near the boundary.

1. Invariant Spirals

We know by Theorem II1.3.1 that repelling periodic points are dense
in the Julia set 7. Let 2z be such a repelling periodic point, with mul-
tiplier A = (R™)'(20). Locally R™(z) behaves like z — 29 — A(z — 20)
near 29, and this seems to indicate that the Fatou set of R con-
tains a logarithmic spiral with endpoint at zy. We can then conclude
that J has a very complicated structure as soon as arg(R™)(zo) is
generically irrational.

We may assume that zj is a repelling fixed point, and we assume
also that zp is on the boundary of an invariant component U of the
Fatou set F. We wish to construct curves in U terminating at zg. Our
strategy is as follows. Let g be the branch of R™! fixing zo, and denote
A, = {|z — 20| < €}. For ¢ small, g is a contraction mapping of A,
with multiplier 1/ at its attracting fixed point zg. Let wg € U N A,
be near zg. At issue is whether some iterate w, = g™(wp) lies in the
same component of U N A, as wp. If so, we join wg to w, by an arc
70 in U N A¢, and the union of the images of 7o under ¢m, 7 >0,
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forms a curve 7 in UNA, terminating at 2o. The curve v is invariant
under g, and R"(y) D 7.

Suppose there are finitely many connected components U, ..., Un
of UNA, that fill out a neighborhood of zp in U, that is, that include
all points of UNA, for p >0 sufficiently small. We may assume that
each U; contains 2 on its boundary. Evidently each g(Uj) is either
a subset of some Uj or disjoint from U. If z € Uy is near 2o, then
w = R(z) belongs to some Uj, and g(U;) C Uy. In view of the
finiteness assumption, g thus determines a permutation of the Uj’s,
and consequently some iterate g" leaves invariant each U;j. Now the
argument in the preceding paragraph shows that every wo € una,
can be joined to zo by a curve y in U N A, satisfying R™(7) D -

With more effort, we establish the following.

THEOREM 1.1. Let U be a simply connected and completely invariant
component of the Fatou set F, and let 2o € OU be a repelling fived
point of R. Then there existsn 2 1 such that any wo € U sufficiently
close to z can be joined to zo by a curve y inU satisfying R™(7y) D -

Proof. We continue with the notation introduced above. The com-
plete invariance of U guarantees that ¢ maps U N A¢ into itself. Fix
wo € U N Ag, and define w; = ¢’ (wo).

Fix a point b € U, b ¢ A, and consider Green’s function G(z,b) =
G(z). In terms of the conformal map ¥(¢) = 2 of the open unit disk A
onto U, ¥(0) = b, we have G(2) = log [¢(¢)|. Now B = Y loRoyisa
d-sheeted covering of A over A, hence a Blaschke product of degree
d. If p < 1 is such that B({) has no zeros for p < |¢] < 1, then,
for ¢ > 0 sufficiently small, log |¢| < clog|B(¢)| on the boundary of
the annulus and hence on the entire annulus. In terms of Green’s
function for U, this becomes

G(2) > ¢G(R(2)), z € U, z near 0U.

Tterating this, we obtain G(w;) > &9 G(wp). We also choose co > 0 s0
small that G(z,wp) > coG(z,b) on a small circle centered at b. By
the maximum principle, the estimate persists for all z € U outside
the circle, and we obtain

G(wj, wo) > coc G(wo). (1.1)

Now suppose the points wj all lie in different components of UNA..
Note that [w; — 20| < C|A|77 for some C > 0. Let v; be the geodesic
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curve from wp to wj, for which we have the estimate of Theorem 1.4.4.
Fix N large. For C|]A\|™N < r < eand j > N, let §;(r) be the distance
to AU of the point where y; meets the circle {|z—zo| = r} for the last
time. The 7;’s must pass through different arcs of UN{|z —zo| =},
or else we could join some w; to a wy by an arc in U N A¢. Thus

N+p

Z 6;(r) < 2mr,

j=N+1

and by the Cauchy-Schwarz inequality,

pe (X a0)(X i) 3 o

J=N+1 j=N+1 j=N+1"J
Hence N
+p 2
dz € d
Z / 14z > B—/ il > ¢} Np®.
J=N+1"% 5J(|z|) 27 CIA-N T

The integral over one of the curves v; must exceed c; Np. If we take
p = N, choose such a v;, and use the estimate of Theorem 1.4.4, we
obtain for this j the estimate

G(wj,wp) < 3exp(—c1N?%/2). (1.2)

On the other hand, from (1.1) and j < 2N we have G(w;,wo) >
coc*™ G(wp), and this contradicts (1.2) for N large.

Hence for some N < j < j+n < 2N, w; can be joined to wjin by
an arc in U N A,. The union of the images of the arc under iterates
of g" forms a curve in U N A, starting at w; and terminating at zo.
The image v of this curve under RJ starts at wp, terminates at zq,
and satisfies R™(y) D 7.

It remains to show that n can be chosen independent of wp, and
this part of the argument is topological. Replacing R by an iterate,
we can assume there is already a path 3 in U N A, terminating at
2 and satisfying g(3) C B. We repeat the above discussion, and
we want to show that w; and w,, lie in the same component of
U N A, for some j, since then we obtain 7 satisfying R(vy) D v. We
assume that the points w; 4 are in different components of UNA¢
for 0 < k < n. We can also assume that these are different from the
component containing 3, which is invariant under g. Let Gy denote
the path constructed above, from w; through wjin to 2o, and let
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Bi = g*(B3). The paths 3, Bo, -, Bn-1 have a circular ordering, which
is the ordering of the last points where the paths cross a fixed small
circle {|z — 20| = r}. This ordering is independent of r, and it is
preserved by g. Since the curve 8 is fixed by g, and since the others
are permuted, in fact the others must be fixed also. Thus wjt1 =
g(w;) lies in the same component as wj, as required. O

Simple examples show we cannot take n = 1 in Theorem 1.1.
Consider R(z) = 22—2, which has Juliaset J = [-2, 2]. The repelling
fixed point —1, with multiplier —2, is accessible from each side of
J by paths in F satisfying R2(y) D v but by no path satisfying
R(y) D 7. However, there is an analogous result for rationally neutral
fixed points, and here we can take n = 1.

THEOREM 1.2. Let 2o be a parabolic fized point of R with multiplier
R'(20) = 1. Let U be a simply connected and completely invariant
component of F with zg € OU and U not an attracting petal for zo.
Then if wo € U 1s sufficiently close to 2o, there exists a curve y C U
joining zo to wo, such that R(y) D -

Proof. The proof of Theorem 1.1 carries through with minor modifi-
cations. In this case, U is included in a cusp at 2o, and the discussion
of the Fatou coordinate, applied to g, shows for € small that g maps
U N A, into itself. Moreover, |wg — 20| ~ 1/kY/™ where m is the
number of petals at zp. This time ; satisfies

—EEI—ZE/E d—TZCQNIOgN+63N+C4,
v; 65(lz) — 2w Jon-v/m T
where ¢ > 0. As before, the estimate of Theorem 1.4.4 leads to a
contradiction for large V.

Again we obtain a curve v in UNA, joining w; to wy for some k >
j. Consider the Fatou coordinate function ¢ for g, which conjugates g
to translation by 1. The curve ¢(7) goes from p(w;) to o(w;)+k—7,
while p(g(7)) is the translate of p(y) by 1. If k —7 > 2, the curve
must intersect its translate, and we find a curve from w; to wj+1 in
U N A.. As before the various iterates generate a curve from wy to
20, this time satisfying R(y) D v. O

Theorems 1.1 and 1.2 were proved in [Ca2]. The proof meth-
ods are related to those of the Ahlfors-Carleman-Denjoy theorem
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(see [Beu], [Fu]). A.E. Eremenko and G.M. Levin (1989) have ob-
tained invariant curves in U terminating at repelling fixed points,
without the hypothesis of simple connectivity. They treat polynomi-
als, with U = A(oc0), and they apply the subharmonic version of the
Ahlfors—Carleman-Denjoy theorem to the composition of the inverse
of Koenigs’ coordinate function (an entire function of finite order; see
Section I1.3) and Green’s function.

2. Repelling Arms

Let U be an invariant, simply connected component of the Fatou
set F, and let 29 € OU be a fixed point of R(z). Let V be an open
subset of U, and suppose there is a conformal map { = ¢(z) of V
into a horizontal strip S = {a < Im( < b} whose image includes a
left half-strip {¢ € S : Re( < —C}, such that z — zp as Re( — —o0
with Im ¢ fixed; 2 — J as Im{ — a or Im{ — b; and ¢ conjugates
R to the translation { — ¢ + 1,

o(R(2)) = ¢(2) + 1, z€V, R(z) e V.

In this situation, we say that V is a repelling arm of F terminating at
z0. The quotient space V/R is conformally equivalent to an annulus
with modulus b — a, so that the height of the strip is uniquely de-
termined. The coordinate ¢ is unique, up to a translation. Applying
Lemma IV.2.4 to R™!, we see that the fixed point 2 is either a re-
pelling fixed point or a parabolic fixed point with multiplier 1. If 2 is
parabolic, then V approaches z, through a gap between consecutive
attracting petals.

A periodic repelling arm terminating at a periodic point is defined
in the obvious way. The topological argument at the end of the proof
of Theorem 1.1 shows that periodic repelling arms terminating at
the same point have the same period. Moreover, if the fixed point is
parabolic, and if a cycle of periodic repelling arms terminates at the
fixed point through the same cusp, then in fact the cycle consists of
only one repelling arm.

EXAMPLE. Let B(z) be a finite Blaschke product of degree d > 2
whose Julia set coincides with the entire unit circle 9A, and suppose
20 € OA is a repelling fixed point of B. Let 7 be Koenigs’ coordinate
function at zg, so that 7(zp) = 0, and 7(B(2)) = A7(2) in a neigh-
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borhood of zg. Since arg B(z) is increasing around 9A, the multiplier
)\ is positive, A > 1. Since B leaves OA invariant, we can assume T
maps A to the lower half-plane. Then

_ Log 7(2)

o(z) = Tog \ (principal branch)

coordinatizes two repelling arms terminating at 2o, one in A and the
other in C\A, each mapped to a half-strip of height 7/ log A.

THEOREM 2.1. Suppose U is an invariant component of F that is
simply connected, let ¢ : A — U be the Riemann mapping, and set
B =v¢"toRo1, a finite Blaschke product. Suppose Co € 0A is a
fized point for B(C). Then »(C) has a nontangential limit zo at Co,
and zo is a fized point for R(z) that is either repelling or parabolic
with multiplier 1. If Co is a repelling fized point for B(C), then for
p > 0 sufficiently small, p{ANI[¢—Col < p}) 15 a repelling arm
for R(z). Otherwise, Co is @ parabolic fived point for B(() with Julia
set A, and zp is a parabolic fized point for R(z) which has U as an
attracting petal.

Proof. Since B is proper, it is a finite Blaschke product. Assume
Co = 1 is fixed by B. Let m be any sequence of radii increasing to
1 such that (r,) converges, say to 2o # oo. Now the conformal
self-map (¢ — 7n)/(1 — rn¢) of A maps 7 to 0 and B(ry) to

B(rn) —Tn [(B(rn) —1)/(rn — -1

1 —7r,B(ry) B —"'n[(B(rn) —1)/(rn — 1))+ U

whose modulus tends to

Bl

Thus the hyperbolic distance in A from 7, to B(ry) is uniformly
bounded, and the hyperbolic distance in U from Y(rn) to Y(B(rn)) =
R(y(ry)) is also bounded. The comparison of the hyperbolic and
cuclidean metrics in Theorem 1.4.3 shows that [R(¢(rn)) — ¥(rn)| —
0. In the limit we obtain R(zg) = zo. Since R has only a finite number
of fixed points, 1(r) must accumulate at zp as 7 increases to 1, and
¥(¢) has nontangential limit zo at 1.

If the fixed point (o € OA is repelling, we compose ¥~ with the
logarithm of Koenigs’ coordinate function, as in the example above,
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to obtain a repelling arm at zg. This implies z is either repelling or
parabolic with multiplier 1.

Suppose finally that (p is not repelling. Then B™({) — ({p on A, so
that R"(z) — OU for z € U. By Lemma IV.2.4, R™(z) converges on
U to a parabolic fixed point z; of R(z) with multiplier 1. By joining
an appropriate ( € A to B(() and iterating, we obtain a curve in A
terminating at (o along which ¥(() has limit z;. Lindelof’s theorem
implies z; = 2g. Thus in this case zg is a parabolic fixed point and
U is an attracting petal at zg.

Consider two arcs v+ and v- in U starting at zg and terminating
at points z;,z_ € J which lie near 2y in the respective repelling
cusps on each side of the attracting petal at zy. These curves divide
U into three pieces, one containing the attracting direction, the other
two Uy lying between 1 and the part of J in the repelling cusps.
In view of our analysis of parabolic fixed points, we can choose v
and y- so that U, and U_ are invariant under g. Let (4 be the
terminal points on A of the curves 1) ~!(y1) as 2 — 24+. The domains
¢ ~}(Uy) are contiguous to the two arcs between (o and (4, and
these arcs must be on different sides of (5. The curve ¢~!(g™(v,)) in
U, terminates at (p and another point (,. Since ¢g"(U;) decreases,
¢, moves monotonically towards (p, hence converges to a point (*.
Since ¢"(z4) moves towards zp in the repelling cusp, one sees that
any nontangential limit of ¢ on the arc between (* and (y must
coincide with zp, hence (* = (y. Evidently B((n+1) = (n, so the
direction along the arc from (y to (, is repelling for B. Similarly,
the direction from (y to (_ is repelling, so (y is a parabolic fixed
point for B with two petals. O

ExaMPLE. Consider R(z) = 22 + 1/4. The Julia set J of R is the
cauliflower set depicted in Figure 5 of Section VIII.1, which was
shown in Section V.4 to be a simple closed Jordan curve. On the
bounded component of the Fatou set F, R is conjugate to a Blaschke
product on A of degree 2, with one parabolic fixed point on A
corresponding to the parabolic fixed point of R at 1/2. According
to the discussion in Section VL5, R is in fact conjugate to B(() =
(3¢2 + 1)/(3 + ¢?). The unbounded component A(co) of F has a
repelling arm at the parabolic fixed point 1/2, which issues from 1/2
along the real axis in the positive direction. The action of R on A(c0)
is conjugate to the Blaschke product (2, which has a superattracting
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fixed point at 0 (corresponding to 00), and a repelling fixed point at
¢ = 1 (corresponding to the parabolic fixed point at z =1 /2).

The argument in Theorem 2.1 is reversible, as follows easily from
Lindeldf’s theorem. A periodic repelling arm in an invariant compo-
nent U arises from a unique repelling periodic point on A, and the
period of the arm coincides with the period of the periodic point. In
the case where AU is locally connected, we can say more.

THEOREM 2.2. Suppose U is an invariant component of the Fatou
set F that is simply connected, and suppose OU is locally connected.
Let ¢ : A — U be the Riemann mapping, with associated Blaschke
product B = ™1 o Ro1. Suppose 2o € AU is a repelling periodic
point for R, or that zo is a parabolic periodic point and U is not an
attracting petal for zo. Then v (z0) = {C1, -, CN ) s finate. Each (;
is a repelling periodic point for B and determines a periodic repelling
arm in U that terminates at zo. These N periodic repelling arms fill
out a neighborhood of zg in U.

Proof. We assume 2 1S a repelling fixed point (the parabolic case
is almost the same, and there is also an analogous result if U is an
attracting petal for z). We use the notation of Section 1, and we take
§ > 0 sosmall that [p()—v(§)| <e/2for (€ € A satisfying [ —¢| <
8. If z = P(¢) € U N A,g, then the image under ¥ of ANA((,0) is
contained in UNA,. Since only finitely many of these sets ANA((, 6)
can fit disjointly into A, there are only finitely many components
Ui,...,Un of UNA¢ that contain 2o in their boundary, and these fill
out a neighborhood of zg in U. By the discussion preceding Theorem
1.1, there is in each U; a curve 7; invariant under some iterate of g
and terminating at zo. Then ¥~ (v;) terminates at a point ¢; € 04,
and if R™(7;) D 7, then (j is a fixed point of B™. By our hypothesis,
¢; cannot be a parabolic fixed point for B, so ¢j is arepelling periodic
point. It determines a repelling arm terminating at zo, via Theorem
2.1, through which ~; approaches zo. The curve 7; can be chosen so
that its initial arc passes through any two prescribed points of Uj.
Consequently ¥~! has the same limit along the iterates of these two
points, and for each w € Uj, ¥~ 1(g*"(w)) tends to (; as k — oo.
Let p > 0 be small, and let V; = V(A(Cj, p) N A). Then Vj is
a repelling arm for some R", which is contained in U; and which
terminates at zg. We claim that Vi,...,Vn are the only repelling
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arms in U terminating at 29. Indeed, if V is such a repelling arm,
say for R™, then the iterates of w € V under g" eventually enter
some Uj, and since ¥~ 1(g*"(w)) tends to (j, the arm V is the same
arm as Vj.

Suppose & € ¥~ 1(z) is distinct from the (;’s. We may assume
that p is less than the distance from &g to the V;’s, and that there is
r > 0 small such that [1)(¢) — 20| > 7 on the circular arc {|¢ — (o| =
p} N A. Let W be the component of U N A, containing the image
under ¥ of the end of the radial segment terminating at §. By what
has been established, with ¢ replaced by r, W contains a repelling
arm terminating at zo. However, this contradicts the fact that W' is
disjoint from the V}’s. We conclude that v~ Hz0) = {¢1,...,(n}, and
it follows easily that the V;’s fill out a neighborhood of 2 in U. O

For a color illustration of such a configuration (in the Mandelbrot
set), with 29 arms, see Map 38 on page 82 of [PeR].

3. John Domains

A domain D is called a John domain if there exists ¢ > 0 such that
for any zp € D, there is an arc ~y joining zo to some fixed reference
point wg € D satisfying

dist(z,0D) > c|z — 20|, z E€7. (3.1)

If oo € 0D, we use the spherical metric to measure the distance.

If two smooth boundary arcs meet at a corner with a positive an-
gle, the condition (3.1) is satisfied near the vertex. If however the
two boundary arcs meet tangentially at an outward-pointing cusp,
the condition (3.1) cannot be satisfied. Similarly, if D is a simply
connected component of the Fatou set that has a repelling arm ter-
minating at a parabolic point, then D is not a John domain.

A simply connected John domain has a locally connected bound-
ary. This can be seen easily from the proof of Carathéodory’s theorem
given in Section 1.2. The crosscuts I'y, constructed there have lengths
tending to 0, and the condition (3.1) then shows that the diameters
of the pieces of D outside the crosscuts tend to 0. This implies that
the Riemann map from A to D extends continuously to 9A.

The image of a John domain under a quasiconformal homeomor-
phism of C is evidently a John domain. Thus the two complemen-
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tary components of a quasicircle are John domains. It can be shown,
conversely, that if the two complementary components of a simple
closed Jordan curve are John domains, then the curve is a quasicircle.
Thus John domains can be regarded as “one-sided quasidisks.” For
this and further background material on John domains, see [NaV].
Towards improving upon Theorem VI.2.1, we prove the following.

THEOREM 3.1. Suppose R is subhyperbolic on the Julia set J. Then
any simply connected component of the Fatou set F is a John do-
main.

We carry out the proof first in the hyperbolic case, where the
ideas are clearer, and then we indicate how to adapt the proof to the
subhyperbolic case.

Proof (hyperbolic case). Let R be hyperbolic, and suppose Uis a
simply connected component of F. Each component of F is iterated
eventually to an attracting cycle of components. Replacing R by an
iterate, we may assume that R(U) contains an attracting fixed point.
Since R is proper on U, R(U) is also simply connected. Since R is
conformal on AU, it suffices to prove that R(U) is a John domain.
Thus we may assume that U itself has an attracting fixed point.
Replacing R by the rational function Rg of Theorem VIL.5.1, which
is also hyperbolic, we may further assume that R on U is conjugate
to (™ on A.

Let ¢ : A — U conjugate (" to R(z). By Theorem V1.4.2 (or by
the proof of Theorem V.4.3), ¥ extends continuously to 0A. We will
show that the geodesics {(re?) : 0 <r < 1} can be taken to be the
curves in the definition of a John domain. (This may seem fortuitous,
but it turns out that in any simply connected John domain, we can
take the curves in the definition to be geodesics.) Note that R maps
rays to rays.

Choose p > 0 so that all the inverse iterates R~* are almost affine
on any disk of radius p centered in a neighborhood of J, that is,
so that the estimate used in the proof of Theorem V.2.2 holds. Set
vV =¢({1-6<|¢| <1}), where 6 >0 is so small that the affine
mapping estimate holds on disks centered in V of radius p. Since ¢
is uniformly continuous, we can assume that any two points of V on
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the same conformal ray are within distance p of each other. Set
co = inf{dist(z,J) : 2z € V, R(z) ¢ V}.

Then ¢y < p.

Suppose z; lies on the ray between wo and 2¢. It suffices to check
the estimate (3.1) for zo and 21 in V. Let n > 1 satisfy R"(z1) € V
and R"(z1) ¢ V. Then the disk centered at R"(z1) of radius co is
disjoint from J. By the affine mapping property, the image of this
disk under the appropriate branch of R™" covers a disk centered at
21 of radius say half of co/|(R"™)'(21)|. Hence

dist(z1,J) > <0

1
2 SRy Gl 32

On the other hand, since R"(zo) and R™(z1) lie on the same ray,
they are within distance p of each other, and the affine mapping es-
timate yields |20 — 21| < 2p/|(R™)'(21)|. Combined with the estimate
(3.2) above, this gives (3.1), and the theorem is proved when R is
hyperbolic. O

To carry over the proof to the subhyperbolic case, we require a
version of the affine mapping estimate. For this, it is natural to work
with an admissible metric, and we use the specific metric o con-
structed in the proof of Theorem V.3.1, as modified in the remark
after the proof. Thus ¢(2) is a constant multiple of [z — a;| =% near
each of its singularities a; , where 0 < 8; < 1, and elsewhere o(z) is
smooth.

Let D, denote differentiation with respect to the o-metric, defined
by

(D,R)(z) = "V R (2),

Thus R dilates infinitesimal distances at z in the o-metric by a factor
of |(DyR)(z)|. The chain rule is valid,

n—1

(DoR™)(2) = [ (DsR)(R*(2)),
k=0
as is the inverse function rule, (DR~ 1)(R(z2)) = 1/(DsR)(z). From
the precise form of ¢ at its singularities, one checks that |DsR| is
smooth in a neighborhood of 7. The affine mapping estimate is now
as follows.
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LEMMA 3.2. Suppose R is subhyperbolic on J. Let o be the admissible
metric introduced above. Then there is a neighborhood V of J such
that

(DUR"")(w) _
m =1+d,(z,w)O0(1), zyzweV,n>1

Proof. Here we can specify R ™(z) to be an arbitrary branch, and
then the determination of R~™(w) is that obtained by continuing
R™"(z) along the shortest path between z and w in the o-metric
(irrespective of singularities of R™™). Since R is strictly expanding
with respect to o, the inverse branches satisfy |(DyR')(z)| < c <1
in a neighborhood of J. The neighborhood can be chosen to be
invariant under the inverse branches. By integrating, we obtain

da(R’k(z), R—k(w)) < ckda(z, w)

whenever the shortest path between z and w lies in the neighborhood
of J and in particular whenever z is near w. Thus

_ (DR)(R7M)(2)) \
(Do R)(R~F)(w))

‘(DUR)(R”“)(Z)) — (DgR)(R")(w))
(Dy R)(RF)(w))

CLl(RF)(2) = (R7F)(w)]

Cody(R7(2), R *(w)) < Cac*dy(2,w).

IA A

Using the chain rule as in the proof of Theorem V.2.3, we obtain

Do) _ 11+ g o
Do)~ Wi+ ez u)ow)

which yields the desired estimate. U

Proof of Theorem 3.1 ( subhyperbolic case). We aim to show that U
satisfies the John condition (3.1), with distances measured in the
o-metric rather than the euclidean metric. From this, it is straight-
forward to conclude that U is a John domain, and the details are left
as an exercise. (Note that a problem arises in comparing the metrics
only at singularities, so one can focus on o(z) = |z|7? inside the unit
disk.)

Since | D, (R)| is smooth, bounded above and away from zero near
J, the o-geometry of U near the boundary is the same as that of
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R(U), so we may proceed as before and assume that R(z) on U is
conjugate to (™ on A. Again the conjugation extends continuously
to AU, hence is uniformly continuous with respect to the o-metric.

Choose p > 0 as before, with R~* almost affine on o-disks of
radius p, and choose V as before. Define ¢ in terms of the o-metric,
so that if z € V but R(z) ¢ V, then the o-distance from z to J is at
least cg. For 21 on the ray between wp and zp, we obtain this time
an estimate of the form

fam—y

- co
dlSta(Zl,J) 2 §m (33)

Since R™(z9) and R™(z1) lie on the same ray, they are contained in
a o-disk of radius p, as is the ray connecting them. We may assume
that this disk also contains the shortest path between the points. If
there are no singular points a; in this disk, the analytic branch of
R™" sending R"(z1) to 21 also sends R"(z) to 2. This yields an
estimate of the form

4p
dg(Z(),Z}) S W' (34)

If there is a singular point a; in this disk, we connect R™(z) to
R"™(20) by a path in the disk of o-length at most 3p, such that the
continuation of the branch of R~™ mapping R"(z1) to z; along the
path sends R"(z0) to 2o. By integrating along this path, we obtain
again an estimate of the form (3.4). Now (3.3) and (3.4) show that
U is a John domain in the o-metric, as required. O

Suppose P(z) is a subhyperbolic polynomial with a connected Ju-
lia set J. We claim that the boundary of each bounded component
U of the Fatou set F is a quasicircle. Indeed, dU is locally connected,
so the Riemann map from A to U extends continuously to A. Since
dU is included in the boundary of a single component A(oco) of its
complement, the Riemann map is one-to-one on A, and oU is a
simple closed Jordan curve. Now A(oco) is also a simply connected
John domain. From the condition (3.1) for A(co), one deduces easily
that (3.1) holds for the larger domain C\U. If we invoke now the
characterization of quasicircles cited earlier (but not proved), we de-
duce that AU is a quasicircle. In the case of hyperbolic polynomials,
this result is subsumed by a theorem of M.V. Yakobson (1984).
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ExAMPLE. Each component of the body of Douady’s rabbit (Figure
4 in Section VIII.1) is bounded by a quasicircle.

Theorem 3.1 and the application come from [CaJ]. Under certain
hypotheses, Theorem 3.1 remains valid for parabolic components of
F (see [CaJY]). Herman has proved (cf. [Do3]) that if a Siegel
disk associated with a quadratic polynomial has the critical point
on its boundary, and if the multiplier has the form \ = €2™ where
9 satisfies the Diophantine condition (6.2) of Section II.6 for some
exponent j, then the boundary of the Siegel disk is a quasicircle if
and only if the Diophantine condition is satisfied with p = 2.



VIII

Quadratic Polynomials

We are interested in the dependence of a dynamical system on pa-
rameters, and we focus on the maps z — 22 + c. This leads to the
Mandelbrot set M in parameter space, which has a universal char-
acter in the sense that similar-looking sets show up when one stud-
ies very general parameter dependence. One striking feature of M
is that shapes of certain of the Julia sets J. in dynamic space (z-
space) are reflected in the shape of M near the corresponding points
in parameter space (c-space).

1. The Mandelbrot Set

A quadratic polynomial P(z) can be conjugated by z’ = az to a
monic polynomial 22 4+ az + 3. This can be further conjugated by a
translation 2/ = z + b to move any given point to 0. If we move one
of the fixed points to 0 we have conjugated P to the form Az + 22,
where ) is the multiplier of the fixed point. This does not determine
the conjugacy class uniquely, as we can place the second fixed point
at 0. If we move the critical point to 0 we have conjugated P to the
form
P.(z) = 2% +¢,
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and now it is easy to check that different c’s correspond to different
conjugacy classes. Thus we can regard the c-plane as representing
conjugacy classes of quadratic polynomials (that is, it is a “moduli
space”). We are interested in how the dynamic behavior of P de-
pends on the parameter c. The following dichotomy is an immediate
consequence of Theorems 111.4.1 and I11.4.2.

THEOREM 1.1. If P*(0) — oo, then the Julia set J. 1s totally discon-
nected. Otherwise P(0) is bounded, and the Julia set is connected.

The set of parameter values ¢ such that PZ'(0) is bounded is of
special interest. It is called the Mandelbrot set and denoted by M.
Thus ¢ € M if and only if 0 does not belong to the basin of attraction
of the superattracting fixed point at oo.

THEOREM 1.2. The Mandelbrot set M is a closed simply connected
subset of the disk {|c| < 2}, which meets the real azis in the inter-
val [—2,1/4]. Moreover, M consists of precisely those ¢ such that
|P?(0)| <2 for alln > 1.

Proof. If |¢| > 2, one shows by induction that
BRO) > lel(lel =¥, n21,
so |P™(0)] — oo and ¢ ¢ M. Thus |¢[ <2 for c € M.

Suppose |P™(0)| = 2+ 6 > 2 for some m > 1. If |c| = |P:(0)| > 2,
then ¢ ¢ M. If |c| < 2, then |Pm+1(0)] > (2 + §)2 —2 > 2 +46.
Proceeding by induction, we obtain |Pmtk(0)] > 2 + 456 — oo, and
again ¢ ¢ M. This proves the final statement of the theorem, from
which it follows that M is closed. By the maximum principle, C\M
has no bounded components, so C\ M is connected, and M is simply
connected.

If ¢ is real, then P.(z) — = has no real roots if ¢ > 1/4, one root
at 1/2 if ¢ = 1/4, and two real roots if ¢ < 1/4.If ¢ > 1/4, P(0) is
increasing and must go to infinity, since any finite limit point would
satisfy Po(z) = z. lfc < 1/4,leta= (1+V1~— 4c)/2 be the larger
root of Pe(z) —z. If additionally ¢ > —2, one checks that a > le| =
|P.(0)|. Then |P*(0)| < a implies |PRFL(0)| = |P2(0)2 4| < a®+c=
a, and the sequence is bounded. Thus M N R=[-2,1/4.0
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FIGURE 1. The Mandelbrot set M.

The theorem suggests a simple algorithm for computing M. If
|P™(0)| < 4 for 1 < n < 1000, color the pixel ¢ black, otherwise color
it white. See Figure 1.

We review the various possibilities for the Julia set J. of P.. By
Douady’s Theorem VI.1.2, there is at most one periodic cycle of
bounded components of F.. By Sullivan’s Theorem IV.1.3, every
bounded component of F. is eventually iterated into the cycle. Since
Herman rings do not arise for polynomials, the classification theorem
of Section IV.2 gives the following four possibilities for ¢ € M.

1. There is an attracting cycle for P.. Either there is an attracting
fixed point, in which case there is only one bounded component
of F,. Or the cycle has length two or more, in which case there
are infinitely many bounded components of F.. By Theorem
V.4.1, J. is locally connected.

2. There is a parabolic cycle for P.. Either there is a parabolic
fixed point with multiplier 1, in which case there is only one
bounded component of F.. Or the cycle of parabolic compo-
nents of F, has length two or more, in which case there are
infinitely many bounded components of F.. The former case
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occurs only for one value of ¢, namely, ¢ = 1 /4 (see Figure 5
to follow). By Theorem V.4.3, . is again locally connected.

3. There is a cycle of Siegel disks. This case has been discussed
in Section VI.1.

4. There are no bounded components of Fe. This occurs for in-
stance for ¢ = —2, where J. = [—2,2], or for ¢ =i, as in the
figure in Section V.4. It may happen (Theorem V.4.4) that J.
is not locally connected.

THEOREM 1.3. For each \, |\| < 1, there is a unique ¢ = c(\) such
that P. has a fized point with multiplier X. The values c for which P,
has an attracting fized point form a cardioid C' C M, and 0C C OM.
Ifce C, then J. is a quasicircle.

Proof. The fixed points of P, are at zc = (14 +/1—4c)/2, and the
multiplier at z. is A(c) = 2z. Since ¢ = A/2 — A2/4, the condition
|A(c)| < 1 corresponds in the c-plane to the cardioid

C={N2-)2?/4: |\ <1}

It is a subset of M, called the main cardioid of M. Since the func-
tion A/2 — A?/4 is one-to-one on the closed unit disk, we have the
uniqueness assertion of the theorem. According to the discussion at
the end of Section VI.2, the Julia set J. is a quasicircle for c € C.

Let W be the component of the interior of M containing C. By
Theorem 1.2, the polynomials fr(c) = P*(0) are uniformly bounded
on W. They converge to the attracting fixed point z. on C, hence
on account of analyticity to the fixed point z. on all of W. However,
if c ¢ C, then 2 is repelling, and we cannot have P*(0) — z. unless
P"(0) = 2 for n large. Since this can occur only on a countable set,
we conclude that W = C. O

The figure in Section VI.2 corresponds to ¢ = /2, which is inside
the main cardioid. Another example is given in Figure 6 to follow.

The multiplier function A(c) = 1—+/1 — 4c maps the closure of the
cardioid homeomorphically onto the closed unit disk. The boundary
9C consists of precisely the parameter values c for which P, has a
neutral fixed point. These are favorite choices for generating com-
puter pictures. The Siegel disks appearing in Section V.1 correspond



VIII.1. The Mandelbrot Set 127

FIGURE 2. Attracting flowers.

to a value ¢ on the boundary of the main cardioid with multiplier
A = e¥™ where § = (v/5 — 1)/2 is the golden mean, as discussed in
Section V.1. For a multicolored picture of the Siegel disk correspond-
ing to this c-value, see Map 25 on page 77 of [PeR]. The filled-in
Julia sets corresponding to parabolic fixed points with multipliers
A = exp(27i/3) and A = exp(27i/5) are depicted in Figure 2.

Now we consider the more general case of attracting cycles.

THEOREM 1.4. Suppose there is an attracting cycle of length m for
P,. Then a belongs to the interior of M. If W is the component
of the interior of M containing a, then P. has an attracting cycle
{z1(¢), ..., zm(c)} of length m for all c € W, where each z;(c) depends
analytically on c.

Proof. Let z1(a) be an attracting periodic point of period m for a.
Applying the implicit function theorem to Q(z,c) = P*(z) — z, we
obtain an attracting periodic point z;(c) for P, of period m, which
depends analytically on ¢ in a neighborhood of a. In particular, a
belongs to the interior of M, say to the component W. The sequence
fi(c) = PI™(0) is bounded hence normal on W, and it converges at
a to some point in the cycle of z;(a), say to z;(a) itself. Since z;(c)
is attracting, f;(c) converges to zi(c) for ¢ near a. By normality
fj(c) converges on W to some analytic function g(c), which satisfies
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Q(g(c),c) = 0 near a hence on W. Now g(c) can be a repelling
periodic point for fixed ¢ € W only if P/™(0) actually coincides with
g(c) for j large. This occurs on an at most countable set. Since the
multiplier A(c) of the cycle is analytic, we conclude that |A| < 1 on
W, that is, the cycle of g(c) is attracting for all ¢ € W . Further, the
period of g(c) is exactly m for all ¢ € W (as in Lemma II1.2.5). The
functions Pi(g(c)), 0 < i < m, give analytic selections of the points
of the cycle. O

The set of ¢ for which P, has an attracting cycle was studied by
R. Brooks and J. Matelski in 1978. The components of the inte-
rior of M associated with attracting cycles are called the hyperbolic
components of the interior of M since, by Theorem V.2.2, Fc is hy-
perbolic precisely when ¢ ¢ M or P has an attracting cycle. It is
not known whether the hyperbolic components fill out the interior
of M, but we will soon see that they are dense in M. Brooks and
Matelski arrived at the work of Fatou and Julia from a problem on
discrete subgroups of PSL(2,C), and their rough computer picture
was the first picture of the Mandelbrot set. Working about the same
time and completely independently, B. Mandelbrot obtained progres-
sively sharper pictures of the Mandelbrot set, which called attention
to the intricate nature of the set.

One of the hyperbolic components is the main cardioid C, corre-
sponding to cycles of length one. For cycles of length two, we have

Q(z,c):(z2+c)2+c—z:(z2—z+c)(z2+z+c+1).

Discarding fixed points, we obtain the equation 22 +z+c+1=0
for periodic points of period two. The multiplier is given by

(P?)(z) = 423 + dz¢ = 4c+4 modulo (2% +z+c+1).

Thus there is an attracting two-cycle if and only if |[4c+4| < 1, and
we obtain a single hyperbolic component which is a disk centered at
—1 of radius 1/4, tangent to the main cardioid. Note again that the
multiplier A(c) maps the hyperbolic component conformally onto the
open unit disk. We show in Section 2 that each hyperbolic component
of the interior of M contains a unique point ¢ such that P has a
superattracting cycle, and that the corresponding multiplier map
¢ — M(c) maps the component conformally onto the unit disk.

Of special interest are the parameter values ¢ for which P, has a
superattracting cycle. The critical point 0 must belong to the cycle,
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L.
FIGURE 3. Airplane set, ¢ ~ —1.754878.

so these are precisely the c’s for which 0 is periodic, that is, the
solutions of P*(0) = 0. The first few polynomials are

P(0) = ¢

c+c2,

c+c?+28 + 4

= c+c2+23+5c4+6¢°+ 65 +4c" + &

3
~~ ~~
(=)

Il

For n = 1, the equation reduces to ¢ = 0, and we obtain the super-
attracting fixed point at 0 for Py(z) = 2%. For n = 2, the equation
becomes c? + ¢ = 0. This gives an additional solution ¢ = —1, for
which P_1(z) = z? — 1 has a superattracting cycle 0 — —1 — 0 of
period two. See Figure 8.

The superattracting cycles of period three correspond to the so-
lutions of P3(0) = 0, excluding A = 0. These are the roots of ¢ +
2c2 +c+1 = 0, which are approximately —1.755 and —0.123+0.749;.
The real root belongs to the largest component of the interior of M
located on the “main antenna” towards the left of M. The filled-in
Julia set for the real root is the “airplane set” pictured in Figure
3. The two complex roots belong to the largest components of the
interior of M above and below the main cardioid. The filled-in Julia
set corresponding to a complex root is pictured in Figure 4. This set
is known as “Douady’s rabbit.”

THEOREM 1.5. The values of c € M corresponding to superattracting
cycles cluster on the entire boundary OM. In particular, the interior

of M is dense in M.

Proof. Let U be a disk that meets OM, such that 0 ¢ U. Suppose
U contains no ¢ for which 0 is periodic. Consider a branch of v/—c
defined on U. We have P*(0) # +/—c, or else P**1(0) = 0 and 0

is periodic. Thus fn(c) = PZ(0)/+/—c omits the values 0,1,00 on
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FIGURE 4. Douady’s rabbit, ¢ & —0.122561 + 0.7448621.

U, hence is a normal sequence on U. But since U meets OM, it
contains both points ¢ with f(c) bounded and with fn(c) — o0, s0
the sequence cannot be normal. O

Let us see how the Julia set changes shape as ¢ moves along the
real axis. If we move c to the right of 1/4, it leaves the Mandelbrot
set and the Julia set becomes totally disconnected. At the right of
Figure 5 we have a picture of J. for ¢ = 0.251. The black points are
those for which |P*(0)| < 4 for n < 500. At the left of Figure 5 is the
cauliflower set, corresponding to ¢ = 1 /4. In this case J is a simple
closed Jordan curve (Section V.4), though it cannot be a quasicircle
due to the cusps.

We show in Figure 6 the Julia set J. for ¢ = —3/5. We are back
in the main cardioid, so J. is a quasicircle, symmetric with respect
to R. Moving back to the left, at the left edge of the main cardioid
we arrive at the point ¢ = —3/4 with multiplier —1, so that P has
a parabolic fixed point —1 /2. There are two petals at —1/2, which
cycle back and forth. The filled-in Julia set is pictured in Figure 7.

When we continue to the left of —3/4, the fixed point bifurcates
to an attracting cycle of length two, corresponding to the two petals.
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FIGURE 5. ¢ = 0.25 (cauliflower set), and ¢ = 0.251 (totally disconnected).

FIGURE 6. ¢ = —0.6, quasicircle.
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FIGURE 7. ¢ = —0.75, parabolic cycle of period two.

FIGURE 8. ¢ = —1, superattracting cycle of period two.

This process is called “budding,” and the point —3 /4 is the “root”
of the bud. There is budding at each point of 8C with rational mul-
tiplier. The parabolic fixed point with multiplier a primitive mth
root of unity splits into an attracting cycle of length m, sprouting a
“hud” which is a hyperbolic component of the interior of M tangent

to 0C.

For ¢ = —1, we have the superattracting cycle 0 — -1 -0
pictured in Figure 8. The basic shape of the Julia set is preserved as
we cross from ¢ = —3/5 over ¢ = —3/4 to c = —1.

At ¢ = —5/4 we have a parabolic cycle of petals of order 4, and
there is further budding. Continuing to decrease c gives a sequence
co > ¢ > cg > --- of parameter values corresponding to parabolic
cycles of order 2". In the complementary intervals, Pe has attracting
cycles of order 2". This behavior is known as the period doubling
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of Feigenbaum, and ¢, — coo &~ —1.401. In the interval [—2,c],
periods of many different orders occur.

A point ¢ € M is called a Misiurewicz point if 0 is strictly preperi-
odic, that is, P"(0) = P¥(0) for some n > k > 0, but P*(0) # 0 for
all n > 1. By Theorem V.2.3, these are exactly the points where P.
is subhyperbolic without being hyperbolic on J.. By Theorem V.4.2,
the Julia set J. is a dendrite, and, by Theorem VIIL.3.1, C\J. is a
John domain. Since P, is expanding with respect to some metric,
there are no neutral cycles, and the cycle of P¥(0) is repelling.

The Misiurewicz points are located in a complicated pattern in the
antenna area of M. Both ¢ = —2 and ¢ = i are Misiurewicz points.
We have seen that the Julia set of 22 — 2 is [~2,2]. The Julia set of
2% +1 is pictured in Section V.4. Since the Misiurewicz points are the
zeros of a sequence of polynomials, they are countable. The proof of
Theorem 1.5 can be modified to show that they accumulate on all
of OM. We will see this in another way in Sections 5 and 6, where
we show that these points belong to M and are terminal points of
arcs in the complement of M.

2. The Hyperbolic Components of M

We return to the polynomial Q(z,¢) = P™*(z) — z in z and c. The
zero set V of Q is a one-dimensional complex analytic variety in C2.
It consists of all (z,c) such that z is a periodic point of P, whose
period divides m. Note that ) is a monic polynomial in both z and
in c, so that if (z,¢) € V and one of |z| or |c| tends to infinity, then
so does the other. The projection of V' onto the c-plane is a branched
covering map with 2™ sheets.

Fix one of the hyperbolic components W of the interior of M that
corresponds to attracting cycles of length m, and let z;(c) be the
analytically varying periodic point of P. from Theorem 1.4. Let W
be the subset of V of points (z1(c),c) for ¢ € W, and let Vj be the
irreducible branch of V containing W. We can view V; as a Riemann
surface spread over the c-plane, on which (P*)'(z) is analytic. Let
V be the subset of Vy where |(P7)(z)| < 1. Then 8V consists of
piecewise analytic curves on which |(P*)'(z)| = 1. As ¢ € W tends
to a € W, we have (z1(c),c) — AV, or else we could continue
z1(c) analytically to a neighborhood of a to give attracting periodic

points, contradicting a € OM. Thus W is a connected component of
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V. The projections of the analytic arcs in OW are piecewise analytic.
(At worst they might develop cusps where (P™)(z) = 1.) Thus OW
is piecewise analytic. Since W U OW has connected complement,
OW has no multiple points, and W must be a simple closed Jordan
curve. Thus OW is also a simple closed Jordan curve, and the branch
z1(c) extends continuously from W to W U AW (including to the
cusps).

Let p(c) denote the multiplier of the attracting cycle for c € W.
Since p(c) = (P™) (z1(¢)), p(c) extends continuously to OW, where
it has unit modulus. Consequently, the extended multiplier function
p(c) is a continuous finite-to-one map of W onto the closed unit
disk A, which maps W analytically onto A. Our main goal in this
section is to prove the theorem of Douady-Hubbard-Sullivan (see
[Dol]) that this covering is simple, so that the multiplier function
p(c) parametrizes w.

THEOREM 2.1. If W is a hyperbolic component of the interior of M,
then the multiplier p(c) of the attracting cycle of P., c € W, maps
W conformally onto the open unit disk A. It extends continuously to
OW and maps W homeomorphically onto the closed disk A.

Proof. Fix a € W. Let Ui, ...,Un-1,Un = Up be the cycle of compo-
nents of F containing the attracting cycle. We assume Up contains
the critical point 0, so Py is two-to-one from U onto Uy, and P, maps
each other U; conformally onto Uj+1. Let ¢ map Uy conformally to
A, with the fixed point of P going to 0. Then ¢ o Pg" o e lisa
Blaschke product of degree two, mapping 0 to 0. After normalization
of ¢, the Blaschke product has the form

o P™o -1 _ _ C+>‘
(poPlog O =BaO =5 <L

for some A € A. Since ) is the multiplier of the fixed point at 0 for
Bx(¢), and this is invariant, we have A = p(a).

The idea now is to reverse this procedure. For A < 1—¢, we
combine the dynamics of P,(z) outside the U;’s with B, inside, to
obtain ¢()\) so that Py, has multiplier p(c(X)) = A, and so that c(A)
depends continuously (!) on A. Since ¢(\) must have a branch point
at a critical value of p, the continuity of ¢(A) shows that p(c) has no
critical points, and hence p is one-to-one. The construction of ¢()) is
done by quasiconformal surgery as in the proof of Theorem VIL4.1,
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except that here the Beltrami equation is solved with a continuous
parameter . Attention must also be paid to the complication that
there is an invariant cycle rather than a fixed component.

So fix € > 0 small, let 1 —¢ < r < 1, and denote A, = {|¢| < r}.
We assume that r is so close to 1 that for each A, [A| < 1 — ¢,
the curve B;l(aAT) is a simple closed Jordan curve in the annulus
r < |¢| < 1 mapped two-to-one by B, onto the circle 0A,. Set
Ag = Uy N P, (™ Y(A,)). Then ¢ ' (A,) C Ag, and PJ* is a two-
to-one cover of Ag over ¢ 1(A,). Define ¢, : 04y — B;l(BAT) SO
that By o) = po P choosing the branch so that ¢ is continuous
in A\. Extend ¢, smoothly to a diffeomorphism from Ag to B;l(AT),
to vary smoothly also with A, so that vy = ¢ on ¢ }(A,). Define
Aj Cc Uj for 1 < j < m so that A, = Ay and P, maps each
A; conformally onto Ajy1, 1 < j < m. Define g\(2) = Py(2) for
z ¢ UA;, and define gx(z) on UA; so that it maps cach A4; into A4;41,
and so that g'(z) = ¢~ }(Bx(pa(2))) on Ag. Thus g\(2) = Pa(z) on
AU - UAp_1, and gy(z) = Pa_m“(g;”(z)) on Agy. Consider the
ellipse field that is circles outside of UA; and that is invariant under
gx. Under iteration by gy, points hit the annular region where gx
is not conformal at most once, so the ellipse field is distorted at
most once on any orbit, and consequently the Beltrami coefficients
iy are bounded strictly less than 1 in modulus. Moreover p) moves
continuously with . Let v, solve the Beltrami equation, with the
usual normalization ¥y (z) = z + o(1) at co. Then fy = 1) ogx odJ;l
is analytic, and fy(z) = 2% + O(1) at oo, so fa(z) = 2% + ¢(A) =
P,y (z). Since g) has an attracting cycle of length m, so does fy,
and the multipliers are the same. Thus p(c(A)) = A. Finally the
solutions vy depend continuously on the parameter A, so that c(})
depends continuously on A. By the initial remarks we have proved
the theorem. O

If P, has a neutral cycle of length m, then a € OW for some
hyperbolic component W associated with attracting cycles of length
m. Indeed, let zo be a point in the cycle, and let V}, be an irreducible
branch of V containing (zg,a). Then (P")(z) cannot be constant
on Vj, or else since Vj projects onto C there would be a neutral
cycle for all P, an absurdity. Thus (2, a) is in the boundary of some
component W of V (defined earlier). The projection W of W into the
c-plane is a hyperbolic component of the interior of M, and a € OW.

If W is associated with attracting cycles of length m, then every
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¢ € OW with p(c) # 1 has a neutral cycle of length m, which is the
analytic continuation of the attracting cycles of W. If p(c) =1, then
P, has a parabolic cycle whose length divides m. If the length of the
cycle of P, is a proper divisor of m, then c lies on the boundary of
another hyperbolic component, from which W is obtained by “bud-
ding.” The point on W where p(c) = 1 is called the root of W, and
the point of W where p(c) = 0 is called the center of W.

EXAMPLE. There are three superattracting cycles of period three,
hence three hyperbolic components corresponding to attracting three-
cycles. One of these is the largest bulb on the top of the main car-
dioid. At the root of the component, the cycle of period three coa-
lesces to a parabolic fixed point with multiplier e2™/3  depicted in
Figure 2 of Section 1. The second hyperbolic component is located
in the symmetric position below the main cardioid. The third hyper-
bolic component is the largest component centered on the real axis
between —2 and the Feigenbaum point. For a color close-up of this
component of the Mandelbrot set, see Map 32 on p. 89 of [PeR]. The
root of the component is a cusp, and it corresponds to a parabolic
cycle of length three and multiplier 1.

3. Green’s Function of 7.

For the analytic study of Pe, the conjugation map ¢.(z) at oo is the
natural tool,
Pc(Pe(2)) = ‘PC(Z)2~
It is uniquely determined and has the form ¢.(z) = z + o(1) at oco.
Recall from the superattracting case of Chapter II that
pe(2) = lim PR(2)* ",

n—oo

which can be written

9= f:[ (< 5511(2»2)2% = H (” Pr () >2

The functional equation for ¢, allows us to extend log|@c(2)| har-
monically to A.(co), where it coincides with Green’s function Gc(z)
for A.(oco) with pole at oo. From the discussion in Section I1.4 we
have the following.
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THEOREM 3.1. The logarithmic capacity of the Julia set J. is equal
to 1 for all c.

In this case the functional equation for Green’s function is
G.(P:(z)) = 2G¢(2), z € Ac(00).

By the discussion in Section III.4, there are two cases that occur.
If ¢ € M, there are no critical points of P, (or G.) in A.(c0), and
the equation .(z) = v/@c(Pe(z)) allows us to extend p.(z) to a
conformal map of all of A.(0c0) onto {|¢| > 1}. On the other hand,
if c ¢ M, then 0 € A.(00), and p.(z) extends analytically to the
exterior {G. > G.(0)} of the level curve of Green’s function passing
through the critical point 0, mapping it conformally onto {|¢| >
eGC(O)}. The level curve forms a figure-eight with cusp at 0, as in
Section II1.4, and ¢.(z) approaches different values as z approaches
0 from different sides.

Recall that Green’s lines are the orthogonal lines to the level curves
of Green’s function. If 0 € M, these are just the curves in A.(o0)
mapped by .(z) to rays in conjugation space. Even if ¢ ¢ M, they
are well-defined, and they cluster at the boundary of A.(c0), except
for at most countably many that meet a critical point of G.. We
define R(6,K.), called an external ray of K., to be the Green’s line
that corresponds to the ray Re?™ in conjugation space, that is, the
Green’s line with initial segment o !(Re?"%), €% < R < 0o. Thus
Green'’s lines are parametrized by a parameter 6 from 0 to 1 (mod
1), where as usual we measure angles in turns rather than radians.
The action of P, on Green’s lines corresponds to doubling the angle
in conjugation space, always reduced mod 1,

ze€R(0,K.) = P.(z)€ R(20,K,).

The dynamics of P. on dynamic space are closely related to the
dynamics of the doubling transformation in #-space.

If the ray R(6, K.) terminates at a point z9 € K., we say that 8 is
an external angle of K. at zy. If c € M and P, has an attracting or
parabolic cycle, then all external rays terminate, and all points of J.
have at least one external angle. If ¢ ¢ M, then K. = J. is totally
disconnected, so R (6, J.) terminates at a point of 7, as soon as it is
defined.
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We extend the definition of Green’s function G for a domain D by
declaring it to be zero in the complement of D. With this convention
in mind, we show that G, is Holder continuous.

THEOREM 3.2. For every A > 0, there ezists a = a(A) > 0 so that
Green’s function G 1s uniformly a-Holder continuous for |c| < A.

Proof. Assume A > 10. Let z € C\K, and let §(2) = dist(z, Ke)-
Let 2o € K. be the point closest to z, and let S be the straight line
segment from 2o to z. Take N = N(z) to satisfy |P™(w)| < A for all
w € S and all n < N, while |PN(21)| > A for some 21 € S. Using
P'(z) = 2z and the chain rule, we see that [(P™)'(w)| < (24)" for
allm < N and w € S. Also, |P™(20)| < 9y/A for all n, or else the
iterates would escape to oo. The mean value theorem then implies

PN (z1)] < 2VA+ 2V AN6(21).

But \PN(zl)l > A, hence N ANG(21) > 1, and 2N AN6(z) > 1. For
a = log2/(log2 +log A) we then have 6(z)% > 2~V so that

G(z) = G(PN (2))27" < M8(2)%,

where M depends only on A.
Consider two points 21, 22 and suppose 8(21) > 6(22). We want to

prove
|G(21) — G(22)| £ Clz1 — 22|

If |21 — 22| > %5(21) this follows from the estimate above. If |21 — 22| <
16(z1), just use the fact that G(z) is a positive harmonic function in
the disk A(z1,6(z1)), to conclude

lG(Zl) - G(ZQ)‘ S COMé(zl)alz1 - 22\/6(21) S C|z1 - ZQla. O

The preceding proof extends easily to polynomials of higher de-
gree, and the corresponding theorem is due to N. Sibony (seminar
talk, 1981). The idea of the proof has been used by J.E. Fornaess
and N. Sibony (1992) to obtain Holder continuity of Green’s func-
tion associated with certain polynomial mappings (complex Hénon
mappings) on C2. It can be shown that Green’s function of a domain
with uniformly perfect boundary is Holder continuous, so Theorem
1I1.3.3 leads to Holder continuity also in the case of iteration of ra-
tional functions.
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The Julia sets J. for |c| < A have Hausdorff dimension at least as
large as the exponent a(A) of the preceding theorem. This follows
from a theorem of Carleson (1963), that a compact subset of R™
is a set of removable singularities for a-Ho6lder continuous harmonic
functions if and only if it has zero (m — 2+ a)-dimensional Hausdorff
measure.

If c € M, we can prove directly that G.(z) is Holder continuous
with exponent o = 1/2. In this case the map f(w) = 1/p-1(1/w) is
a normalized univalent function on A, belonging to S. The estimate
of Theorem 1.1.7 for f leads immediately to an estimate of the form
Ge(z) < C8(2)/? for z in a neighborhood of K., and the Hélder
estimate follows as in the preceding proof. Note that the exponent
1/2 is sharp, as can be seen by taking ¢ = —2 € M, for which 7, is
the interval [—2,2].

THEOREM 3.3. If ¢, — ¢, then the corresponding Green’s functions
G.,(z) converge uniformly on C to G.(z). Thus G.(z) is jointly con-
tinuous in c and z.

Proof. The uniform Holder estimates show that the sequence of func-
tions G, (z) is equicontinuous on compact sets. Let H be a uniform
limit on compacta of a subsequence. Then H is continuous, and H
is harmonic on the set {H > 0}. By the maximum principle, there
are no bounded components of the set { H > 0}, just one unbounded
component. Since the conjugating functions . depend analytically
onc, G, (z) = log|pc, (z)| converges uniformly to G.(z) = log |p.(2)|
for |z| large. It follows that H = G. on A.(cc), hence everywhere.
Since the limit H is unique, we have uniform convergence of the
original sequence. O

4. Green’s Function of M

Suppose ¢ € C\M. As long as G.(z) > G.(0) > 0, the function
¢c(2) is well-defined and analytic. This holds in particular for z = c,
since G¢(c) = 2G.(0) > G(0) > 0. Hence

®(c) = =c H (1 + c)2>

27n71
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is analytic, ® has a simple pole at oo, and log|®(c)| = Gelc) =
2G,(0). By Theorem 3.3, Ge(c) » 0 as c = M, and consequently
|®(c)| —» 1asc— M. By the argument principle, ® assumes every
value in C\A exactly once on C\M, and ® maps C\M conformally
onto the exterior of the closed unit disk C\A. In particular, C\M is
simply connected, and we obtain the theorem of Douady and Hub-
bard (1982), proved independently by N. Sibony (cf. [DH1]), that
M is connected.

Since ®(c) = ¢+ 0O(1) as ¢ — 0, Green’s function of C\M, which
is log |®(c)|, has the form log |c| +0(1) at co. Hence Robin’s constant
is 0, and M has capacity 1. We state these results formally.

THEOREM 4.1. The Mandelbrot set M is connected and has logarith-
mic capacity equal to 1.

In analogy to the external rays of K., we define the external rays
of M to be Green’s lines for C\M, that is, the inverse images of
radial lines under ®. These are denoted by R(8, M), 6 between 0
and 1 (mod 1). If the ray terminates at ¢ € M, we say that 6 is an
ezternal angle of M at c. Observe that the external rays of M are
related to the external rays of K. in the sense that

ceROM) = cE€ R(0,Ke).

It is not known whether every external ray of M terminates, nor
is it known whether the inverse ¥ of ® extends continuously to map
A onto OM. This latter question is equivalent by Carathéodory’s
theorem to M being locally connected. A great deal of work has
gone into this question. It may be of interest to note that this would
follow if there were some uniform estimate of escape times for ¢ in
terms of its distance to M.

THEOREM 4.2. Let 6(c) = dist(c, M). If there exists a decreasing
function F(z) >1 on [0, 1] such that

/1 F(z)dz < o0
0

and
|PN(c)| >5 for N2 F(6(c)),

then M is locally connected.
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Proof. Let ¢ : {|¢| > 1} — C\M be the inverse map to ®(c). If we
can show that |¢'(¢)| < H(|¢|) for some decreasing function H(r) on
(1, 00) such that

2
/ H(r)dr < oo,
1

then 1) is continuous up to the boundary, and we are done.

Let N be the first integer larger than F(6(c)). Since G(Py(z)) =
2G(2), |PN(c)| > 5 implies that G.(c) > Co2~V. For ¢ = ®(c) we
have G.(c) = log|¢| ~ || — 1, so

2_F(6(C)) < 2‘N+1 < Cl('(’ - 1)‘

The Koebe one-quarter theorem gives [¢'(¢)|(|¢|—1) < 46(c), so that

2~ FUv(OICI-1)/4) < Ci([¢] - 1).
Setting t = C1(|¢| — 1) and solving s = 27F(! for s, we find that
1, 1 _1< 1 1)
— <-F ' —=log~|.
ic, (Ol <s < : log2 87
Thus the function

1 1
H(r)= ——F1
() r—lF (log2logCl(r—l))

has the desired properties, since

2 e 1
/ H(r)dr = Cz/ F Y z)de < Cg/ F(z)dz <oo. O
1 A 0

For a hyperbolic situation, N ~ C'log(1/6(c)), which is much
faster than we need. Even an escape time estimate N ~ §(c)~!*¢
would be sufficient to prove M is locally connected.

It would be of interest to run computer experiments to estimate
the escape time NV in terms of §(c) (recommendation: start near
the Feigenbaum point). Towards this end we mention an effective
algorithm, whose idea is due to J. Milnor and W. Thurston (in [Mi2];
for subsequent developments see [Pe], [Fi]). The algorithm estimates
6(c) for ¢ ¢ M. It is based on the approximation arising from the
Koebe one-quarter theorem,

(9] -1

" ey
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as in Theorem 1.1.4. Set zn(c) = PN (0). We obtain by differentiation
of log®(c) = 27N+ log @c(zn(c)) that

14O R e A CI O N
g0 =2 et M
The approximation |®(c)| — 1 ~ log |®(c)| = 9-N+11og |pc(2n(C))]
for N large yields
[2(c)| =1 |pe(2n(c))| log [pe(2n (€))]
|2'(c)] | (c)|h(2n (€))l|2n ()]

The approximations |®(c)| ~ 1, pe(zn(c)) ~ zn(c), oL(zn(c)) ~ 1
then lead to

6(c) ~ lz}v(c)l'l\zN(cHloglzN(c)\, c ¢ M, cnear M, N large.

The algorithm is then to compute successively zo = 0, zj+1 = P.(zj),
until |zy| > R, and then compute the derivative of zy(c) by the
chain rule, 2§ = 0, 2j41 = 2z;2; + 1. The approximator for 6(c)
is |ziy| 72N |log 2N ], and we can obtain good estimates for the er-
ror factor. The resolution of the pictures in [Pe] obtained by the

distance-estimator algorithm is striking.

5. External Rays with Rational Angles

The external rays with 6 rational play a special role. We aim to show
that these rays hit M at well-defined points. If 6 = p/q with p and ¢
relatively prime, then the cases with ¢ odd or even are very different.
If q is odd, the ray terminates at a point ¢ € M with the property
that 0 belongs to a parabolic component of F(FP.). If ¢ is even, it
ends at a point ¢ for which 0 is strictly preperiodic, that is, at a
Misiurewicz point. The reason stems from a simple result on binary
expansions.

Let 0 € [0, 1] have binary expansion 9 = 3°° 0,277, where each 0;
is 0 or 1. The function P, acts on external rays by doubling 0 (and
reducing modulo 1). This corresponds to shifting the sequence of bi-
nary coefficients backwards (and chopping). Evidently the sequence
{6} is periodic if and only if 20 = 6 (mod 1) for some ™ > 1. The
sequence is preperiodic if and only if 270 = 2% (mod 1) for some
n>k>0.
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THEOREM 5.1. Let § = 35.9°6,277 be as above, with 0 < 6 < 1.
Then 6 is rational if and only if the sequence {6;} is preperiodic. If
0 = p/q, where p and q are relatively prime integers, then q is odd
if and only if {0;} is periodic, and q is even if and only if {6;} is
strictly preperiodic.

Proof. Suppose 6 = p/q = p/(2*r) is rational, with r odd, p and ¢
relatively prime. Choose (by Euler’s generalization of Fermat’s little
theorem) m so that 2™ = 1 (mod r). Then

2(mtk)g — okg | ok irg — 9kg 4 jp = 24,

so 0 is preperiodic. If moreover q is odd, then k£ = 0, and 6 is periodic.
Conversely, if 6 is periodic, there are integers m, n such that 2™ =
6+n. Then 6 = n/(2™ —1) is rational, and the denominator must be
odd. If 4 is preperiodic, then 2*6 is periodic, and 6 is again rational,
with even denominator if £ > 1. O

THEOREM 5.2. If 6 is rational, then R(6, M) terminates at a point
a € OM. If 6 has even denominator, then a is a Misiurewicz point,
whereas if 0 has odd denominator, then P, has a parabolic cycle.

Proof. The proof, which is long, proceeds in outline as follows. If
dist(c, J.) — 0 as c tends to a along R(6, M), it is rather easy to
see that a is a Misiurewicz point and 6 has even denominator. If
dist(c, J.) does not converge to 0 as ¢ tends to a along R(6, M),
it is again easy to see that a parabolic component of the Fatou set
is created for P,. The main problem concerns the relation between
the parabolic periodic points and the ray R(6, K,), which eventually
yields the result that 6 has odd denominator.

So let # be rational with period ¢, say 27k = 2%, where ¢ > 1
and k > 0 are minimal. If ¢ € R(#, M), then both P¥(c) and P¢+*(c)
belong to R(2%6, J.). Moreover, these points have uniformly bounded
hyperbolic distance from each other in C\J.. To see this, it suffices
by Theorem 1.4.2 to bound the hyperbolic distance between them
in the simply connected subdomain {G. > G.(0)} of A.(oc0). This
subdomain is mapped conformally to the unit disk by e“<(0) /o, (z),
and the points are mapped to points with radii 7! and rt5*+1 on
the same radial segment, where r = e~<(0), The hyperbolic distance
between these points in the unit disk is bounded, independent of r
(for fixed 7).
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Fix a cluster point a € OM of R(8, M). Suppose first there are
points ¢; in R(6, M) converging to a such that the distance from
¢; to Je, tends to 0. The lower estimate of Theorem 1.4.3 featuring
6log(1/6) shows that hyperbolic disks of uniformly bounded hyper-
bolic radius have euclidean diameters tending to 0 as the centers
approach the boundary. Thus ]Pf]+k(cj) - Pck] (c;)| — 0, and in the
limit we obtain P{t*(a) = P¥(a). Thus a is preperiodic. Now the
cycles containing 0 are superattracting and correspond to points in
the interior of M. Since a € M and since 0 is its only predecessor,
a must be strictly preperiodic, that is, a is a Misiurewicz point. Thus
k > 1, and 6 has even denominator.

Next we analyze the case in which there are points ¢; in R(6, M)
converging to a such that the distances from ¢; to J., are bounded
away from 0. This situation occurs for instance for the rays R(0, Jc)
as ¢ > 1/4 decreases to 1/4, as illustrated in Figure 5, Section 1.
The disconnected set J, closes up, and the limit ray goes into the
“interior.” The point c on the ray converges to 1 /4, strictly inside the
filled-in Julia set Ky /4, which has the parabolic fixed point z =1 /2
on its boundary.

Assuming dist(c;j, Je,) = 6 > 0, Green’s function G, () is positive
and harmonic in A(c;,6) and G, (c;) — 0. Hence Gqe(z) = 0 on
A(a,6), and a belongs to a bounded component U of the Fatou set
of P,. Since a € OM, U is not an attracting component. Since a € U,
there are no Siegel disks. Hence U is in the basin of attraction of a
parabolic cycle in Jq.

Suppose z; € R(0,K,) clusters at qo € J.. Arguing as before,
this time in dynamic space, we see that go must satisfy PT*(qo0) =
P¥(qo). Since the solutions of this equation form a finite set, the ray
must actually terminate at go. Then R(2%0,K,) terminates at the
point ¢ = Pk(qo), and ¢ is a periodic point with period dividing £.
Our first goal is to show that ¢ is a parabolic periodic point.

Suppose not. Since there is at most one attracting or neutral cy-
cle, the cycle of g is repelling. As ¢; — a, R(0, Je,) — R(6,Kq)
in the sense that every compact part of R(6, K,) is approached by
R(,T.,)- The appropriate branch of Py ¢ has an attracting fixed
point at g, so there is a disk A(g,€) in the basin of attraction of g
mapped into a disk of smaller radius by P, ¢t By the implicit func-
tion theorem (see Lemma I11.2.5), P ¢ has an attracting fixed point
q(c) near ¢ = g(a) for all ¢ near a, whose basin of attraction includes
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A(q,€) and which maps A(g, €) into a compact subset of itself. For ¢
near a the ray R(2%6, 7,) remains in the disk A(g,¢€) for a long pa-
rameter interval, and the ray is invariant under P, so the ray must
terminate at g(c). Thus for c near a the rays ’R(2k0, Jc) are uniformly
bounded away from the parabolic cycle. On the other hand, c; be-
longs to R(6, ;) and ¢; — a, so Pg“k(cj) belongs to R(2%6, T, )
and converges to P™**(a). Consequently P™**(a) is bounded away
from the parabolic cycle. This contradicts the fact that a is in the
basin of attraction of the cycle. We conclude that ¢ is a parabolic
periodic point.

The rays R(297%¢, K,) terminate at PJ(q), so the condition on 8
gives P(q) = g. Since P! leaves R(2*6,K,) invariant, it does not
rotate the petals at ¢, and (Pf)'(q) = 1. Now the solution set of
the pair of equations P¢(z) = z, (P¢)'(z) = 1, is a complex analytic
variety in (z,c)-space. For each fixed z, the variety is bounded (in
fact, c € M), so that c is locally constant on the variety. For fixed c,
there are only finitely many solutions z. It follows that the variety
is finite, and there are only finitely many possibilities for a.

Since there are also only finitely many solutions of P{t*(a) =
P%(a), there are only finitely many possibilities for the cluster points
a of the ray R(6, M). It follows that the ray terminates, and the
first statement of the theorem is proved. It remains to show in the
parabolic case that 6 has odd denominator. For this, we begin by
showing that the terminal point gy of the ray R(6,K,) is actually a
parabolic periodic point, and then we will argue that @ is periodic.

We parametrize R(6,J.,) by z;(t) = ' (e'e*™), t > 0, so that
G, (zj(t)) = t. Let g1 be the first point in the parabolic cycle that
is a cluster point of the rays R(6, J.,) as they come in from oco. By
this we mean that for € > 0 small and j large, there is ¢; > 0 such
that |2(t;) — q1| = €, while the distance from z;(t) to other points
of the parabolic cycle is bounded away from 0 for all ¢ > ¢;, uni-
formly in j. There is then 8 > 0 such that |Pf](zj(t)) — zi(t)] >
B for t > t;. Consider g;({) = <pc_j](1/§), which is univalent for
I{| < exp(=G¢,(0)) = p;. Note that t; > G, (c;) = 2G,,(0) for
Jj large, so ]gj_l(zj(t))l =et < pjz for t > t;, and the points
g]»"l(z]-(t)), t > t;, are uniformly bounded in the hyperbolic met-
ric of the disk A(0, p;) on which g; is univalent. Now if ¢ > t; and
g]-_l(zj (t)) = re?™®  then g_l(P[ (z(t ))) = 72¢2™® i5 at a uniformly
bounded hyperbolic distance from g; 1(2;(t)) in the disk A(0, p;).
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Since | gj(reQ’”e) - gj(r22 2™%)| > B3, we see from the distortion theo-
rem scaled to A(0, p;) that for some small § > 0 the image of A(0, p;)
under g; contains a disk centered at ¢, (re2”i9) of radius 6. Here 6
depends on ¢ and 3 but not on j. Thus for j large, R(6, J.,) stays
at a uniform distance é§ from JCJ, and hence at a uniform distance
from J,, until entering an e-neighborhood of ¢;. It follows that q1
must coincide with the terminal point go of R(6, K.). Thus qo is a
parabolic periodic point. (With a little additional effort, we could
establish that go = ¢. The limit of the rays R(cj, Je,) is a ray which
traverses R (6, K,) to the parabolic point g, then makes a sharp turn
depending on the number of petals, and continues upstream along
the flow lines in the basin of attraction of g to the critical value a
and beyond.)

For j > 1, the rays R(2740,K,) terminate at P3¢(qp). Take n so
that n¢ > k. The preperiodicity condition shows that these rays
coincide for j > n, and in particular they terminate at the same
point P¢(qo). Since P! maps this family of rays to itself, and since
P(f is conformal near go, there can be only one ray in the family.
Hence R(6,K,) is invariant under Pf. We conclude that 2tg = 9,
and 6 is periodic. O

Note in the parabolic case that the period ¢ of 0 coincides with the
number of petals of the parabolic cycle of P,. Indeed, the proof shows
that ¢ divides the total number N of petals (= number cusps). By
Theorem I11.2.3, each petal contains a critical point of Pév , so that
the orbit of a hits each petal. Thus P, permutes the cusps cyclically,
and /= N.

Theorem VII.2.2 shows that there are a finite number of repelling
arms for P! terminating at any parabolic periodic point ¢, and these
arms fill out the unbounded component of the Fatou set near g.
Using Lindelof’s theorem, we deduce that through each repelling
arm travels exactly one external ray of K, that terminates at q.
Now P! leaves each cusp between consecutive petals invariant, it
permutes the rays terminating at ¢, and it preserves the circular
order of the rays. It follows that each ray is invariant under P, and
furthermore the same number of external rays terminate through
each cusp at each point of the cycle. It turns out that at most two
rays terminate through each cusp. More precise information will be
given in Theorem 7.1.
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FIGURE 9. External rays terminating at period-three parabolic points of M.

EXAMPLE. Consider the external angles whose binary representa-
tions have period three. There are exactly six of them, 1/7,...,6/7,
and each corresponding ray terminates at a parabolic point a € OM
for which there is a cycle of attracting petals of length three (see Fig-
ure 9). Either P, has a parabolic fixed point with multiplier e*27%/3,
or P, has a parabolic cycle of period three and multiplier 1. The
equations give only three possibilities for a, and these are the roots of
the three hyperbolic components corresponding to attracting three-
cycles. The rays R(1/7, M) and R(2/7, M) terminate at the point of
tangency of the main cardioid and the big bulb at the top of the main
cardioid. The two rays approach their terminal point from opposite
directions and cut the Mandelbrot set into two pieces. Their reflec-
tions in the lower half-plane are the rays R(5/7, M) and R(6/7, M).
The rays R(3/7, M) and R(4/7, M) approach the root r of the third
component from above and below the real axis. (See the example
in Section 2.) In the dynamic plane, the two rays R(3/7,K,) and
R(4/7,K,) approach a parabolic periodic point q on the real axis
of period three from the respective half-planes. There is only one
attracting petal at ¢q. This provides the simplest example for which
there is more than one ray terminating through the same cusp at a
parabolic periodic point.
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6. Misiurewicz Points

We turn now to a discussion of the converse to Theorem 5.2, that all
Misiurewicz points and all points in M corresponding to parabolic
cycles are the endpoints of rays R (6, M) with 6 rational. This in-
volves the construction of curves in the complement of M that ter-
minate at the point, and in turn this involves the deformation of
paths in the Fatou sets F (P.) as we vary the parameter c. In the
case of Misiurewicz points, we are deforming rays that terminate at
repelling periodic points, which is considerably easier than deform-
ing rays terminating at parabolic periodic points. (Viewed this way,
repelling points are attractive.) In this section, we give a reason-
ably complete treatment of the repelling (Misiurewicz) case. In the
final section, we content ourselves with describing the results and
indicating a deformation method for the parabolic case.

We begin with a more detailed description of the Julia set corre-
sponding to a Misiurewicz point. Let a be a Misiurewicz point, with
critical orbit

0—a— Pu(a) = - — PE(@) = - = B (a) = P(a),

so that a enters the cycle at the kth iteration and the cycle has period
m. Since P, is subhyperbolic, the cycle is repelling. Since the only
preimage of a is 0, the critical value a does not belong to the cycle,
and k > 1. By Theorem V.4.2 the Julia set J, = K, is a dendrite, and
the inverse of the conjugating map ¢q extends continuously to map
the unit circle onto J,. Thus every external ray R(0,K,) terminates
at a point of K4, and every point of K, has at least one external
angle.

By Theorem VII.2.2, there are a finite number N of repelling arms
at P¥(a), and these fill out the Fatou set near P%(a). From Lindelof’s
theorem (Theorem 1.2.2) we see that through each repelling arm
there is exactly one external ray terminating at P¥(a). The appro-
priate inverse branch of P~F maps these onto N arms of the Fatou
set that fill out the Fatou set near a, each of which has exactly one
external ray terminating at a. Let the external angles of K, at a be
61, ...,0n. The successive images of the ith arm under P, then have
external angles 20;,46; , ..., all reduced mod 1. The external angles
are circularly ordered, and since P, preserves the order, so does the
doubling operation on the external angles. Thus if one of the re-
pelling arms at PF(a) has period ¢, they all do, and consequently
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2k+g, = 2%9; for 1 < i < N, that is, each of the 6,’s is strictly
preperiodic, k is the first integer such that 26, is periodic, and the
periods are all the same, equal to the period ¢ of the repelling arms.

ExXAMPLE. Consider the ray R(1/6, M), which terminates at some
a € M with Ima > 0. The binary representation 1/6 ~ (0,0,1,0,1,
0,1,...) is strictly preperiodic. From this representation we deduce
that P3(a) = P,(a). Now

P3(c) — Pu(c) = Alc+2)(c + 1)%(c? +1).

The roots 0 and —1 corresponding to superattracting cycles can be
discarded. The ray cannot terminate at —2, which is at the left tip
of M. The only possibility is that R(1/6, M) terminates at i. The
arms at P;(i) = i—1 have period two. Since i — 1 — —i, there can be
only one arm at each of the points i — 1 and —i, so these points lie
at tips of the dendrite, as does a = i. See the figure in Section V.4.

EXAMPLE. Let a be a Misiurewicz point such that P?(a) is a fixed
point for P,, that is, such that P3(a) = P2(a). Since
P3(c)—P%(c) = S +4c"+6c5+6¢° +4c* = cHet+2)(B+2c2+2c+2),

c

we find upon discarding the superattracting cycle exactly four possi-
bilities. The root a = —2 corresponds to the critical orbit 0 — —2 —
2—2— .-, 50 Py(a) is already a fixed point. The cubic factor has
one real root 79 ~ —1.54369 and two complex roots. One can verify
that the rays with external angles

> 0,1,1,0,1,0,1 7 1,0,0,1,0,1,0

EN(,,,,,,,...), EN(,,,,,,,...),
correspond to a Misiurewicz point a on the real axis with two re-
pelling arms, one above and one below the real axis, which are inter-
changed by P,, and that this a-value coincides with ry. The complex
roots correspond to rays with external angles 1/4 ~ (0,0,1,1,1,...)
and 3/4 ~ (1,1,0,0,0,...).

Now we wish to transfer information about the Julia set at a to the
parameter plane, to obtain information about M at a. We continue
with the notation above.

Consider again the polynomial Q(z,¢) = P™(z) — z in z and c.
Denote by zp = zo(a) the first point P¥(a) of the repelling cycle,
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and denote by A(a) the multiplier of the cycle, so that IA(a)] > 1.
Then zo is a fixed point of P, so Q(z0,a) = 0. As before, the
implicit function theorem guarantees that the equation Q(z,¢) =0
has a unique solution zo(c) near zo(a) for c near a, which depends
analytically on c. The point z0(c) is a repelling periodic point of
period m for P., with multiplier A(c) depending analytically on c.

Let h. map a disk {|¢| < é} to a neighborhood of zp(c), so that he
is a conjugation of P™ and multiplication by A(e):

he(M€)C) = P (he(C)),  Me)h:'(2) = he ' (P(2)),  [Cl <o

We normalize he so that h.(0) = 1, and then h. depends analytically
on the parameter c.

Fix an external angle 6; of K, at a, and let ¢ = 2k9j, so that
R(¢,K,) terminates at zo(a). We consider the rays R(¢,K.) for ¢
near a. These vary analytically with c outside any neighborhood of
z0(a). Near zo(c) the rays are invariant under P-™, and the relation

1
P:™(2) = he( ~r=he !
() = he( e )
shows that the rays terminate at 2o(c), uniformly for ¢ near a. For
fixed t > 0, let z;(c) be the point on the ray R(¢,K.) that satisfies
Ge(2t(c)) =t, that is,

e(2i(c)) = €'e’™?, £>0.

Then z:(c) depends continuously on ¢ and c, z;(c) depends analyti-
cally on c for each fixed t, and z(c) tends to 2o(c) uniformly for ¢
near a as t decreases to 0.

Now zo(c) does not coincide identically with P*(c) near a, or we
would have P™tk(¢) = P¥(c) identically. Thus for some v > 1 and

c

A, # 0, we have
z20(c) — P¥(c) = Au(c —a)” + O(|c — al”th).

For t > 0 small, the equation z(c) — P¥(c) = 0 has v solutions
c1(t), ..., cy(t) counting multiplicities, depending continuously on ¢
and tending to a as t — 0. In particular, Pckl(t)(ci(t)) € R(¢,Ke,(1))-
By applying the appropriate branch of Pc"(kt), we obtain ¢;(t) €

R(0;,K.,(1))- Hence ci(t) € R(6;, M), and it follows that R(0j, M)
terminates at a. We have proved the following.




VIII.6. Misiurewicz Points 151

THEOREM 6.1. If a is a Misiurewicz point, then there are a finite
number of external rays R(6;,K,) of K, that terminate at a. Each
external angle 6; of K, at a is rational and strictly preperiodic. More-
over, each ray R(6;, M) of the Mandelbrot set terminates at a € M.
In particular, every Misiurewicz point belongs to OM and is the ter-
minal point of R(6, M) for some strictly preperiodic 6.

We wish to analyze the situation at the point a more carefully.
We aim to show that the Julia set 7, is asymptotically similar at a
to the Mandelbrot set M, and in particular if C\J, has N arms at
a, then C\M also has N arms at a. We begin by showing that the
multiplicity v above is 1.

LEMMA 6.2. With the notation above, zo(c) — P¥(c) has a simple
zero at a, as does P™+k(c) — P¥(c).

Proof. From
Peitt) (Pl (€i(1) = e,y (21(ci(t))) = ete?™?,
we have, since ¢;(t) € R(6;,K,,()), that
Soci(t) (Cl(t)) = et/2ke2ﬂ'10]

Since ® is one-to-one, the ¢;(t)’s coincide, call their common value
c(t). Thus

2(c) = PE(c) = O(lc — c(t)]), ¢ — c(t).
Now pc(z) = ete?™® + O(|z — z(c)|), so
B(0)”" = p(PH(c) = €™ + O(Jc — c(t)]"),  c— c(t).

But ®(c)2" has nonzero derivative at ¢ = c(t). We conclude that
v =1, and zp(c) — P¥(c) has a simple zero at a. We calculate

d m+k k d k
w|Fe @ F|  =Aa) = 1) |Fi(e) —z0(e)|

dC c=a c=a

so the second statement is equivalent to the first. O

For c near a, define

Z(c) = ha o h'(P¥(c)) = z0(a) + O(|c — a|).
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Since h.(0) = 1, we have h;1(PE(c)) = P¥(c) — z0(c) + O(|Pk(c) —
20(c)|?). From the preceding lemma, h;1(Pk(c)) has a simple zero at
a, so Z(c) is univalent near a.

We wish to compare the orbits PJ™**(c) and Pi™(Z(c)), j > 1.
We compare the orbits in conjugation space, where the dynamics are
simply multiplication by A(c) and A(a), respectively. We have defined
Z(c) so that the starting points (o = h;1(PE(c)) = hg*(Z(c)) are the
same, and at time jm we have A(c)7¢o and A(a)?(o, respectively. We
iterate until we are about to leave a disk of fixed size, say {|¢| < C1},
at the Jth iteration, where J = J(c). For {o we have the estimate

1ol = IR (Z(c))| 2 Colc - al,

since k! is analytic and h;'(20(a)) = 0. Thus Cole—a||A(a)]’ < Ch,
and

J < Cqlog c—a’

Since A(c) is an analytic function of ¢, we have A(c)/ Aa) =1+
O(|c — al), and thus

M0 ¢ — Ma) ol = ICOHA(anl“ (%)))Jl

Cil1 - (14 O(le — a)))’|

IN

IN

Cs|c — allog

lc—al

Going back to the z-plane, we obtain an estimate of the form

|PI™**(c) — PI™(Z(c))| < Cle - allog (6.1)

lc —al
so long as the iterates remain inside a fixed disk centered at zo(a).

Fix a repelling arm for P* at P¥(a) = 2o(a), call it S. Parametrize
S by £ = ¢(z), s0 a < Im¢ < 3 and Pg" is translation by 1 in the
¢-coordinate. Let S; be the subset of S represented by parameter
values a + & <Imé& < B —¢, Ref <. Let T be a period rectangle
in S, of the form {z € Sc : v —1 < Re{ < 7}, where v is large
negative so that T} is close to a. Let V. be a neighborhood of T; that
is compact in S. Choose N so that all points in V; are iterated to
|z| > 4 in at most Np steps by P, for all ¢ near a.

We claim that if ¢ is near a and Z(c) € Se, then ¢ ¢ M. Indeed the
estimate (6.1) shows that when eventually the iterates PI™(Z(c)) hit
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T, the corresponding iterates P{™*¥(c) hit V., from whence in N,
more steps they move to |z| > 4 and then beyond towards co. Thus
the image of S under Z~! is asymptotic to an “arm” of C\M at a.

Now suppose that ¢ = 2’°0j is the external angle of the ray termi-
nating at zo(a) through S. Since the ray R(¢,K,) is periodic in &-
space, it lies in S¢ for € > 0 small. For ¢(t) near a the ray R(¢, K1)
passes through T.. Hence for c(t) sufficiently close to a, we obtain
from (6.1) that P™(Z(c(t))) € Vi, and consequently Z(c(t)) € S.
Thus the ray R(6;, M) terminates at a through the set Z~1(S). The
argument shows in fact that the hyperbolic distance between points
of R(6;,K.) and R(#;, M), with respect to C\M, tends to 0 as
the rays tend to their common terminal point a. We have proved
the following version of a theorem of Tan Lei (Exposé No. XXIII of
[DH2)).

THEOREM 6.3. Let a € M be a Misiurewicz point. Let 0, ...,0N be
the external angles of J, at a, and let L; be the arm of F, containing
R(0j,Ja), so that S; = P¥(L;) is a repelling arm at P¥(a) as above,
and Ly, ...,Ly fill out the Fatou set near a. Parametrize L; by ¢ in
a strip aj < Im( < bj, Re( — —o0, and for ¢ > 0 small let L. be
the subset of the arm corresponding to a; + € < Im(¢ < bj —e. Let
Z be as above, and define the conformal map g = Z~1 o P¥, so that
g(a) = a and g'(a) # 0. Then g(L;¢) eventually lies in C\M, and
the ray R(6;, M) terminates at a through g(L;.).

One can note that computer-generated pictures of certain pieces
of the Mandelbrot set in parameter space look strikingly similar to
pieces of Julia sets in dynamic space, with swirling arms configured
in the same pattern. See particularly Figures 4.22 and 4.23 on pages
204-206 of [Pe], and also the figures in [Ta]. An important step in
the proof of Shishikura [Sh2] that the boundary of the Mandelbrot
set has Hausdorff dimension two hinges on the local similarity of the
Mandelbrot set and Julia sets.

7. Parabolic Points

As noted before, the analysis of parabolic points of M is more dif-
ficult than that of Misiurewicz points. We summarize the situation
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in Theorems 7.1 and 7.2, without supplying detailed proofs. For a
complete discussion, see [DH2].

THEOREM 7.1. Suppose P, has a parabolic cycle of length m with
multiplier X. If X # 1, then between any pair of consecutive petals at
any point q of the cycle, there is exactly one external ray of Ko that
terminates at q, and these are permuted cyclically by Po. Ifa=1
and a # 1/4, then there are two external rays terminating at any
point of the cycle, and the set of pairs is permuted cyclically by Fo.
In any case, the corresponding exzternal angles are all rational and
periodic, with period ¢ = mN, where N is the number of petals at q.

The external rays of K, in dynamic space are again related to
those of the Mandelbrot set in parameter space. By Theorem 5.2,
every external ray R(6, M) of the Mandelbrot set with periodic 0
terminates at a parabolic point a € M. Conversely, every parabolic
point a is the terminal point of such a ray.

THEOREM 7.2. Suppose that a € M is such that P, has a parabolic
periodic point. Ezcept in the trivial case a = 1/4 (corresponding
to a parabolic fized point, with one ray R(0, M) terminating at a ),
there are ezactly two rays R(61, M), R(02, M) terminating at a. The
external angles 61,02 coincide with the angles of the external rays of
K, tangent to and on either side of the petal containing a.

We conclude by focusing on one part of the proofs of Theorems
7.1 and 7.2, the existence of an external ray of M that terminates at
the parabolic point a. This will serve to shed light on the phenomena
behind the results and what kind of arguments go into the proof.

For £ the period of a petal, as above, we expand

Pi(z) = Y a;(c)(z = 9)',

where ag(a) = 0 and a1 (a) = 1. If the flower at q has N petals, then
as(a) = -+ = an(a) = 0 and an+1(a) # 0. We will consider only
the special case N = 1; that is, we assume there is only one petal at
g. By moving the point near g where (PY' =1 to 0 and scaling, we
can then assume that our family Pf(z) has the expansion

f(z,¢) = () + 2+ 2%+ B(c)2® + 0(z*) = v(c)? + z + F(z,¢).
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Here ~(c)? is analytic and not identically zero, v(a)? = 0, and ~(c)
is the principal branch of the square root. The point z = 0 is a
parabolic fixed point for f(z,a), which belongs to the Julia set and
also to the boundary of the unbounded component of the Fatou set of
f(z,a). Let 2§ belong to this component and be very close to z = 0.
We denote by I'* a compact subset of this component containing z,
which will be specified later. The target set I'* will be situated near
0 in the repelling arm of the Fatou set containing z§, and it will be
large enough so that the following statement holds.

Main deformation construction. Let 29(c) be any function analytic
near a so that zp(a) is in the parabolic petal of 0. Then there is a
curve I' in parameter space, terminating at a, so that for ¢ € T,
c # a, there exists n = n(c) such that f™(z2o(c),c) € I'*.

In our application, zo(c) is the point corresponding under the con-
jugation to the critical point 0. Thus if ¢ € I is near a, the critical
point is iterated first to a point in a fixed compact subset of the
unbounded component of the Fatou set of f(z,a) and then, by con-
tinuity, to co. Hence I is in the complement of the Mandelbrot set.
By Lindel6f’s theorem, this implies there exists a ray R (6, M) which
terminates at a.

Since the iterates of zp(a) eventually approach 0 through a narrow
cusp tangent to the negative real axis, we focus on initial values zg(c)
that lie in some fixed domain 2 containing —¢, so that z ~ —¢ and
ly| < € on 2. We study parameter values ¢ for which v(c) = a + i3
where a > 0 and |3| < a. In fact, we shall see we can take |3| < Ca?
or |3| < Ca’log(1/a), depending on whether Im B(a) is 0 or not.
We regard a as the main parameter, and we seek parameter values
¢ = ¢(a) so that the parabolic fixed point at 0 splits into two fixed
points, above and below the real axis, opening a window through
which the iterates pass from 2 in the left half-plane to I'* in the
right. As the window narrows, the number of iterations required to
pass through it becomes large.

Now the iteration

i1 = 20 +7(¢)* + F(2n, ) (7.1)
can be approximated by the flow

dz(t)

i v(c)® + F(z,c), 2(0)=2z=zo+iyo € N. (7.2)




156 VIII. Quadratic Polynomials

The equation (7.2) is easily solved for ¢,

[
=120 = | SR a

We are interested in the point iy where the solution curve meets the
imaginary axis. The corresponding parameter value t is given by

= / + /_05 * /0 ()2 jCF(C, o)’

The first integral is analytic in c. In the second, we expand the
integrand 1/[y(c)® + F(¢{,¢)] as

1 B¢ B}, 0Y
FPTE AP+ TGP R B+ O

and we integrate, thereby obtaining

- 1 [y ds
t=A(z0.0) + 55 + B(c)log 75 +1/0 N2 =2+ O(s3)’

where A is analytic and uniformly bounded for Re v(c)? > 0. Note
also that for v = a+1i8 as above, |[dB/dy| < C|y|®~! for some 6 > 0,
and |dA/dv| < C/|y|-

For fixed a > 0, the condition on ( that the curve pass through
the origin is that

73 Re B(
SR T 2

Using |7(c)|? ~ o? and Arg~(c)? = 20/a, we see that the expression
on the left moves continuously from positive to negative as 0 in-
creases between the limits +Ca? log(1/c). Hence it is zero for some
3 ~ (2/)Im B(a)a?log(1/a). For [B| < Co?log(1/a), the curve
crosses the imaginary axis at iy, where

1 Im B(c) 1

Im A(zo,¢)— ) Arg 12 +— log = 0.

Y= %ﬂ — aIm A(z, c) + afRe B(c) — a?log(1/a)Im B(c).

Using the estimates mentioned above, we obtain

dy m
a‘é——a'l"@(a).
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In particular, the y-value of the crossing point is an increasing func-
tion of 3.

Now, let f (2, c) determine a similar flow in the opposite direction,
starting at Zp and approaching the imaginary axis from the right.
We assume f has the same leading term but with opposite sign:

f(z¢) = =v(0)* + 2= 22 + B(0)2* + O(z*) = 2 = (4(c)* + F (2, ).

We conjugate z — —2z and use the same argument. In this case, the
y-value of the crossing point on the imaginary axis is a decreasing
function of 3. Thus we conclude the following.

THEOREM 7.3. Given 29(c), Rezp < 0 and Z(c), ReZp(c) > 0, as
above, there ezists a Jordan curve I' of parameter values c terminat-
ing at ¢ = a and satisfying a > 0 and |3| < Ca?log(1/a), where
v(c) = a+ i, so that the two solution curves of

dZ—(f) = ()?+F(z0), Rez <0, 2(0) = 20(c),
dz_(tt) = ()2 - F(30), Rez >0, %(0) = Z(c),

meet on the imaginary axis.
We can also apply the analysis to f~!(z,c), which has the expan-
sion

2=7(0)* = (2= 7(c)*)* = (B(c) = 2)(z = 7(c)*)* + O((z = 7(0)*)*).

After a conjugation 2z’ = z — y(c)?, this assumes the form f(z,c)
treated above. The lines of flow of f~1(z,c) arrive from the right,
cross over the vertical line Re (z — y(c)?) = 0, and hit the imaginary
axis at a crossing point that is a decreasing function of 3. Thus we
obtain the main deformation result, in the case of flows, with I'* the
single point zj.

When we consider iterations rather than flows, the situation is
quite analogous, but the technical changes are somewhat tedious.
We face two problems.

(a) For the discrete iteration, we cannot expect to hit the
imaginary axis, but to come within C|y|2. This is the rea-
son why I'* must be considered.
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(b) We wish to use the flow to follow the iteration. However,
the (Euler) approximation (7.2) to (7.1) is not accurate
enough.

Let us deal first with the second problem. Instead of using (7.2),
we consider the flow
du()
dt
which can be regarded as a (backward) Runge-Kutta approximation
for (7.2).

= v(c)? + w? + (B(c) — 1)w?, (7.3)

LEMMA. If zo = o + iyo, where —¢ < xo < —v/a and |yo| < |Zol,
then
zo+f(20,¢) dz
/zo v(c)? + 22 + (B(c) — 1)z

5 =14 0(z).

Proof. Expand the integrand, integrate the leading terms in closed
form (as before), and make the obvious estimates. U

Now let W, be a rectangular window centered at —/a, of width
(say) 3a, and of height sufficient so that the flow lines of (7.3) starting
in Q pass through W,,. Take (o € W, on such a flow line, and consider
backward iterates (; = f((j4+1). We compare the polygonal line P,
starting at (o and passing through (1, ...,(n to the backward flow
w(—t) starting at the same point (o. From CJ2+1 = (=i +(’)(CJ3+1)
and Re (¢ — Cj41) ~ |¢j — Gj41l, we obtain

d¢ 2
| e e = OI6h = ol
Since the integrand behaves like 1/¢2, this shows that w(—n) = (o +
O(|¢n]?). We conclude that if 2o € Q, there is a point wy satisfying
|wo — 20| = O(e?), such that the forward flow (7.3) starting at wo
follows closely the iterates of z9p and meets them in Wa.

Now let D, be a similar window, centered at 0, of width (say) 3a?
and height Ca?log(1/a). The curvature of the flow lines of (7.2) is
determined by

dz
dt?

dz

= (22 +3B(c)z® + - )a
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The curve Im (2z+3B(c)22+- - -) = 0 is analytic at 0 with horizontal
tangent. Above this curve, where the imaginary part is positive, the
flow lines are concave up, and below it they are concave down. Thus
there is a cusp domain at 0 of the form U = {Rez < 0, |[Imz| <
co|z|*}, co independent of 7, such that whenever an iterate z,, lies
above U, the succeeding iterate zp, 1 lies below the flow line through
zm; and similarly when z,, lies below U. The iterates z,, are chan-
neled closer to the real axis than the flow lines, and consequently
they also cross the imaginary axis through the window D,
Without supplying details, we describe now our strategy for con-
structing I'. For convenience, assume zy(c) = 29 € 2. The iterates
f"(20,¢) pass through W, and cross over the imaginary axis in Dy,
moving from left to right. By the same token, the inverse iterates of
z; eventually traverse D, from right to left. By varying the param-
eters, we find g and 3y so that for vg = g+ iy and corresponding
co, 7(co) = 70, a forward iterate f™(zg,co) meets a backward iter-
ate f7(25,co) within Dyy. Then f™™(zp,c9) = 2. Let I'* be a
compact tubular neighborhood of a curve in the repelling arm of 2
joining 2§ to f71(23,a). In terms of the coordinate for the repelling
arm (Section VII.2), we can take I'* to be a thin horizontal rectan-
gle with these two points situated near the ends of the coordinate
rectangle. Now f~™(I'*, co) is a tubular domain containing f™(zg, cg)
near one end, and our task is to vary the parameters a and § so as
to steer through the (continuously varying) tube to the other end,
that is, to obtain a curve oy + i3, = v = v(ct), 0 < t < 1, so
that f™(zo,ct) € f~™(I'*, ¢;) and so that f™(20,c1) = f™ (28, c1).
Then f™*™+1(2g,¢;) = 2§, and we may repeat this process, noting
that c; tends to a as ¢ — oo, to obtain the desired curve I'. This
concludes the outline of the main deformation construction.



Epilogue

Complex dynamics leads in many different directions, and there are
a number of interesting and important facets that we have not even
touched upon. We would have liked to have discussed the Hausdorff
dimension of Julia sets. Although we have not mentioned ergodic
theory, it plays today an important role. The idea of holomorphic
motions, for which a prototype is a family of Julia sets depending
analytically on a parameter, leads to fruitful developments. A the-
ory of iteration of entire functions has been extensively developed,
and a theory of iteration of analytic functions in several variables
is beginning to take shape. For further orientation we mention the
expository article of Eremenko and Lyubich (1990), and for several
variables the recent paper of Fornaess and Sibony (1992).
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Carathéodory, C., 6
Carathéodory’s theorem, 6
Carleson, L., 86, 139
Cauchy—Green formula, 17
cauliflower set, 97, 115, 130
Cayley, A., 29

completely invariant set, 56
conjugation, 28

covering map, 10

Cremer, H., 43

critical point, 54
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closure of forward orbit, CL,
81
cycle, 54
attractive, 148
repulsive, 173

da Rocha, L.F., 64

deBranges, L., 5

dendrite, 94

Denjoy, A., 48, 79

dilatation, 16

Diophantine number, 43

distance-estimator algorithm,
141

distortion theorem, 3

Douady, A., 29, 62, 97, 99, 134,
140

Douady’s rabbit, 122, 129

ellipse field, 16

entire functions of finite order,
33

Eremenko, A.E., 113, 161

exceptional set, 57

expanding map, 89

external angle, 137, 140

external ray, 137, 140

Fatou, P., 53, 62, 63, 91
Fatou set, F, 54
Feigenbaum point, 133, 141
filled-in Julia set, K, 65
fixed point, 27

Fornaess, J.E., 138, 161

golden mean, 84, 127
Green’s function, 14, 34
of Julia set, 136

of Mandelbrot set, 139
Green’s lines, 137

Hausdorff dimension, 65, 139
Herman, M., 48, 86, 103, 122
Herman ring, 74, 103
Hubbard, J., 29, 99, 134, 140
hyperbolic components of inte-
rior of M, 128, 133
center, 136
root, 132
hyperbolic metric, 11
hyperbolic mapping, 89

immediate basin of attraction,
28, 58
inverse iteration method, 57

Jacobian, Jy, 15

John domain, 117

Jones, P., vi, 86

Julia, G., 53, 63

Julia set, 54
area, 90
capacity, 137
connectedness, 66
dimension, 139
equals C, 58, 82
filled-in, 65
hyperbolic, 89
local connectedness, 93
uniformly perfect, 64

KAM theory, 44

Kleinian group, 91

Koebe one-quarter theorem, 2
Koenigs, G., 31

Kolmogorov, A.N., 44



Kuusalo, T., 48

Lattes, S., 30

Levin, G.M., 113
Lindelof, E., 6
Liouville, J., 43
Littlewood, J.E., 5
locally connected set, 6
Lyubich, M.Yu., v, 161

main cardioid, 126

Mandelbrot, B., 128

Mandelbrot set, 124
connectedness, 140

Mané, R., 64

Matelski, J.P., 128

Milnor, J., v, 141

Misiurewicz point, 133

modular function, 10

Montel, P., 5, 9

Montel’s theorem, 10

Moser, J., 44

multiplier of fixed point, 27

multiplier of periodic point, 54

neutral fixed point, 27
irrational, 27, 41
rational, 27, 35

Newton’s method, 30

normal family, 5

orbit, 53

parabolic component, 74

parabolic fixed point, 37

Peitgen, H.-O., v

period doubling of Feigenbaum,
132

Index 173

periodic component of Fatou

set, 69, 74
periodic point, 54
petal, 38
Pick, G., 13

Pfeifer, G.A., 43

Poincaré, H., 48

Poincaré (hyperbolic) metric,
11

polynomial-like mapping, 99

Pommerenke, Ch., 64

postcritical set, 81

preperiodic component of F,
70

preperiodic point, 54

quasicircle, 101
quasiconformal mapping, 16
k-quasiconformal mapping,

16
quasiconformal surgery, 99

Raphson, J., 30

rationally neutral fixed point,
27, 35

repelling arm, 113

repelling fixed point, 27, 32

repelling periodic point, 54

dense in Julia set, 63

repulsive cycle, 172

Richter, P., v

Riemann mapping theorem, 5

Robin’s constant, 35

rotation domain, 74

rotation number, 47

Schréder, E., 29
Schroder equation, 29, 41
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Shishikura, M., vi, 62, 104, 105,
153

Sibony, N., 138, 140, 161

Siegel, C.L., 43

Siegel disk, 55

snail lemma, 77

Stolz angle, 7

subhyperbolic mapping, 92

Sullivan, D., 15, 70, 97, 105,
134

superattracting fixed point, 27,
33

superattracting cycle, 54, 128

Tan Lei, 153
Thurston, W., 141

uniformization theorem, 11
uniformly perfect set, 64
univalent mapping, 1
universal covering surface, 10

wandering domain, 70
Wolft, J., 79
Wolff-Denjoy theorem, 79

Yakobson, M.V., 121
Yoccoz, J.-C., 46, 48, 86



Symbol Index

f™, m-fold iterate fo---o f (m times), 27

OF, boundary of E

E, closure of E

A, open unit disk {|z| < 1}

A(29,7), open disk {|z — zo| < 7}

C, complex plane

C, extended complex plane C U 0o

H, upper half-plane {Im z > 0}

R, real line

S§°°, universal covering surface of S, 10

dpp(z), hyperbolic (Poincaré) metric of D, 12

C!, continuously differentiable

QC(k, R), normalized k-quasiconformal maps analytic off A(0, R),
24

QC'(k,R), C*'NQC(k,R), 19

S, normalized univalent functions, 1

F, Fatou set, 54

J, Julia set, 54

K, filled-in Julia set, 65

M, Mandelbrot set, 124

R(0,K), external ray of K, 137

R(6, M), external ray of M, 140

A(zp), basin of attraction of zg, 28

A*(2p), immediate basin of attraction of zp, 28

CL, closure of the postcritical set, 81

D,, derivative with respect to o-metric, 119

P., P.(2) = 2 4+ ¢, 123

F., Fatou set of 22 + ¢

J., Julia set of 22 4 ¢

K., filled-in Julia set of 22 + ¢
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