NATIONAL UNIVERSITY OF SINGAPORE

SEMESTER 2 EXAMINATION 2011-2012

MA3501 MATHEMATICAL METHODS IN ENGINEERING

April/May 2012 Time allowed: 2 hours

INSTRUCTIONS TO CANDIDATES

- 1. This examination paper contains FOUR (4) questions and comprises NINE (9) printed pages.
- 2. Answer ALL questions in the examination paper. Marks for each question are indicated at the beginning of the question. The maximum score for this examination is 80 marks.
- 3. Candidates may use calculators. However, they should lay out systematically the various steps in the calculations.
- 4. Two A4 handwritten double-sided helpsheets are allowed.
- 5. This is a CLOSED BOOK examination.

MA3501

PAGE 2

Answer all the questions.

Question 1 [20 marks]

- (a) The weight of a randomly chosen grape of a given variety may be taken to be a normal variable with mean 5g. Suppose that the probability of a randomly chosen grape that weighs less than 3g is 0.123.
 - (i) Find the standard deviation, in grams. Give your answer correct to two places of decimals.
 - (ii) Find the probability that a randomly chosen grape weighs more than 9g. Give your answer correct to four places of decimals.
 - (iii) Using a suitable approximation, find the probability that, out of 100 randomly chosen grapes, at least three weigh more than 9g each. Give your answer correct to four places of decimals.
- (b) A questionnaire was sent to a large number of people, asking for their opinions about a proposal to alter an examination syllabus. Of the 180 replies received, 134 were in favour of the proposal. Assuming that the people replying were a random sample from the population,
 - (i) test, at the 5% level, the hypothesis that the population proportion in favour of the proposal is 0.7 against the alternative that it is more than 0.7;
 - (ii) find a symmetric 95% confidence interval for the population proportion in favour of the proposal.
- (c) Solve, by the method of characteristics, the following first order partial differential equation.

$$u_x(x,y) + 2xy^2 u_y(x,y) = 0,$$

$$u(1,y) = \sin y.$$

Question 2 [20 marks]

- (a) Let A be a 2×2 matrix with real and distinct eigenvalues λ_1 and λ_2 . Suppose u and v are the respective eigenvectors. Prove that u and v are linearly independent.
- (b) Consider two tanks, each containing 100 litres of water. Both tanks initially contain some amount of salt dissolved in the water. Pure water is poured into tanks A and B at a constant rate of 1 litre per minute for each tank. The thoroughly mixed solution from tank A is constantly pumped into tank B at a rate of 1 litre per minute while the solution from tank B is pumped back to tank A at a rate of 2 litres per minute. The solution in tank A is also pumped out and discarded at a rate of 2 litres per minute. Let $x_1(t)$ and $x_2(t)$ be the amount of salt in Tank A and Tank B, respectively. If $x_1(0) > x_2(0) > 0$,
 - (i) prove that $x_1(t) > x_2(t)$ for all t > 0;
 - (ii) evaluate $\lim_{t\to\infty} \frac{x_1(t)}{x_2(t)}$. Justify your answer.
- (c) Consider the boundary value problem

$$u_{xx}(x,t) = u_t(x,t) + 2x, \quad 0 < x < 1, \ t > 0,$$
 $u(x,0) = x, \quad 0 < x < 1,$
 $u_x(0,t) = 0, \quad t > 0,$
 $u_x(1,t) = A, \quad t > 0.$

Find the value of A such that the solution u(x,t) has a steady state as t tends to infinity.

Question 3 [20 marks]

(a) Let λ be a positive number such that the boundary value problem

$$y'' + \lambda y = 0,$$

$$y(0) = 0$$
, $y'(1) + y(1) = 0$,

has a nontrivial solution.

(i) Prove that λ satisfies the equation

$$\sin\sqrt{\lambda} + \sqrt{\lambda}\cos\sqrt{\lambda} = 0.$$

- (ii) Deduce that $\cos\sqrt{\lambda} \neq 0$.
- (b) Let u(x,t) be the solution to the boundary value problem

$$\frac{\partial^2 u(x,t)}{\partial t \partial x} = \frac{\partial^2 u(x,t)}{\partial x^2}, \qquad -\infty < x < \infty, \ t > 0,$$

$$u(x,0) = \sqrt{\frac{\pi}{2}} e^{-|x|}, -\infty < x < \infty.$$

Evaluate u(1,1).

(c) Let u(x,t) be the solution to the boundary value problem

$$u_{xx}(x,t) = u_{tt}(x,t), \quad -\infty < x < \infty, \ t > 0, \\ u(x,0) = f(x), \quad -\infty < x < \infty, \\ u_t(x,0) = g(x), \quad -\infty < x < \infty,$$

where both f and g have Fourier transforms. Find the Fourier transform $\widehat{u}(\omega,t)$ of u(x,t) in terms of $\widehat{f}(\omega)$ and $\widehat{g}(\omega)$.

Question 4 [20 marks]

(a) (i) Evaluate the integral

$$\int_{\gamma} \frac{dz}{z^2 - 4z + 1},$$

where γ is the positively oriented unit circle with centre at (0,0).

(ii) Evaluate the integral

$$\int_0^\pi \frac{d\theta}{2 - \cos\theta}.$$

(b) By using the mapping $w = \frac{1}{z}$, or otherwise, solve the Laplace equation

$$\begin{array}{lll} \phi_{xx}(x,y) + \phi_{yy}(x,y) = 0 & \text{on} & D, \\ \phi(x,y) = 50 & \text{on} & (x - \frac{1}{2})^2 + y^2 = \frac{1}{4}, \\ \phi(0,y) = 10 & \text{on} & -\infty < y < \infty, \end{array}$$

where $D=\{(x,y):x\geq 0,\, -\infty < y < \infty\}\setminus \{(x,y):(x-\frac{1}{2})^2+y^2<\frac{1}{4}\}$, that is, D is the right half plane in which the disc $(x-\frac{1}{2})^2+y^2<\frac{1}{4}$ is cut out, as shown in the shaded region below.

END OF PAPER
TURN OVER FOR MATHEMATICAL TABLES

Boundary Value Problems $X''(x) + \lambda X(x) = 0$

Boundary	X(0) = 0	X'(0) = 0	X(-L) = X(L)
conditions	X(L)=0	X'(L)=0	X'(-L) = X'(L)
Eigenvalues	$(\frac{n\pi}{L})^2$	$(\frac{n\pi}{L})^2$	$(\frac{n\pi}{L})^2$
λ_n	$n=1,2,3,\ldots$	$n = 0, 1, 2, 3, \dots$	$n=0,1,2,3,\dots$
Eigenfunctions	$\sin \frac{n\pi x}{L}$	$\cos \frac{n\pi w}{L}$	$\sin \frac{n\pi x}{L}$ and $\cos \frac{n\pi x}{L}$
Series	$f(x) = \sum_{n=1}^{\infty} B_n \sin \frac{n\pi x}{L}$	$f(x) = \sum_{n=0}^{\infty} A_n \cos \frac{n\pi x}{L}$	$f(x) = \sum_{n=0}^{\infty} A_n \cos \frac{n\pi x}{L}$
			$+\sum_{n=1}^{\infty}B_{n}\sin\frac{n\pi x}{L}$
Coefficients	$B_m = \frac{2}{L} \int_0^L f(x) \sin \frac{n\pi x}{L} dx$	$A_0 = \frac{1}{L} \int_0^L f(x) dx$	$A_0 = \frac{1}{2L} \int_{-L}^{L} f(x) dx$
		$A_n = \frac{2}{L} \int_0^L f(x) \cos \frac{n\pi x}{L} dx$	$A_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n\pi x}{L} dx$
			$B_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n\pi x}{L} dx$

Boundary	X(0) = 0	X'(0) = 0
conditions	X'(L)=0	X(L)=0
Eigenvalues	$\left[\frac{(2n-1)\pi}{2L}\right]^2$	$\left[\frac{(2n-1)\pi}{2L}\right]^2$
λ_n	$n=1,2,3,\ldots$	$n=1,2,3,\ldots$
Eigenfunctions	$\sin \frac{(2n-1)\pi x}{2L}$	$\cos \frac{(2n-1)\pi x}{2L}$
Series	$f(x) = \sum_{n=1}^{\infty} B_n \sin \frac{(2n-1)\pi x}{2L}$	$f(x) = \sum_{n=1}^{\infty} B_n \cos \frac{(2n-1)\pi x}{2L}$
Coefficients	$B_n = \frac{2}{L} \int_0^L f(x) \sin \frac{(2n-1)\pi x}{2L} dx$	$B_n = \frac{2}{L} \int_0^L f(x) \cos \frac{(2n-1)\pi x}{2L} dx$

Fourier transform \mathcal{F} (with respect to x)

$$\begin{split} \mathcal{F}(e^{-a|x|}) &= \sqrt{\frac{2}{\pi}} \frac{a}{a^2 + \omega^2} \qquad a > 0 \\ \mathcal{F}(\sqrt{\frac{2}{\pi}} \frac{a}{x^2 + a^2}) &= e^{-|\omega|a}, \qquad a > 0 \\ \mathcal{F}(e^{-ax^2}) &= \sqrt{\frac{1}{2a}} e^{-\frac{\omega^2}{4a}}, \qquad a > 0 \\ \mathcal{F}^{-1}(\hat{f}(\omega)\hat{g}(\omega)) &= (g * f)(x) \\ (g * f)(x) &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(s)g(x - s) \ ds \\ \mathcal{F}(\frac{\partial^n}{\partial t^n} u(x, t))(\omega) &= \frac{d^n}{dt^n} \widehat{u}(\omega, t), \qquad n = 1, 2, 3, \cdots \\ \mathcal{F}(\frac{\partial^n}{\partial x^n} u(x, t))(\omega) &= (i\omega)^n \widehat{u}(\omega, t), \qquad n = 1, 2, 3, \cdots \\ \mathcal{F}(\frac{\partial^2}{\partial t^2 x} u(x, t))(\omega) &= i\omega \frac{d}{dt} \widehat{u}(\omega, t) \end{split}$$

Fourier cosine transform \mathcal{F}_c (with respect to x)

$$\mathcal{F}_c(e^{-ax}) = \sqrt{\frac{2}{\pi}} \left(\frac{a}{a^2 + \omega^2}\right), \qquad a > 0$$

$$\mathcal{F}_c(e^{-ax^2}) = \sqrt{\frac{1}{2a}} e^{\frac{-\omega^2}{4a}}, \qquad a > 0$$

$$\mathcal{F}_c(\frac{a}{a^2 + x^2}) = \sqrt{\frac{\pi}{2}} e^{-a\omega}, \qquad a > 0$$

Fourier sine transform \mathcal{F}_s (with respect to x)

$$\mathcal{F}_s(e^{-ax}) = \sqrt{\frac{2}{\pi}} \left(\frac{\omega}{a^2 + \omega^2}\right), \qquad a > 0$$
 $\mathcal{F}_s\left(\frac{x}{a^2 + x^2}\right) = \sqrt{\frac{\pi}{2}} e^{-a\omega}, \qquad a > 0$

Laplace transform \mathcal{L} with respect to t

$$\mathcal{L}(u(x,t))$$
 is denoted by $U(x,s)$

$$\mathcal{L}(u_t(x,t)) = sU(x,s) - u(x,0)$$

$$\mathcal{L}(u_x(x,t)) = U_x(x,s)$$

$$\mathcal{L}(1) = \frac{1}{s}, \qquad s > 0$$

$$\mathcal{L}(t^n) = \frac{n!}{s^{n+1}}, \qquad s > 0, \ n = 1, 2, 3, \cdots$$

$$\mathcal{L}(\sin kt) = \frac{k}{s^2 + k^2}, \qquad s > 0$$

$$\mathcal{L}(\cos kt) = \frac{s}{s^2 + k^2}, \qquad s > 0$$

$$\mathcal{L}(e^{at}) = \frac{1}{s-a}, \qquad s > a$$

$$\mathcal{L}(e^{at}f(t)) = (\mathcal{L}f)(s-a),$$

$$\mathcal{L}(H(t-a)f(t-a)) = e^{-as}(\mathcal{L}f)(s),$$

where
$$H(r) = 0$$
 if $r < 0$, $H(r) = 1$ if $r \ge 0$

PAGE 9 MA3501

Standard Normal Distribution Table

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.0000	.0040	.0080	.0120	.0160	.0199	.0239	.0279	.0319	.0359
0.1	.0398	.0438	.0478	.0517	.0557	.0596	.0636	.0675	.0714	.0753
0.2	.0793	.0832	.0871	.0910	.0948	.0987	.1026	.1064	.1103	.1141
0.3	.1179	.1217	.1255	.1293	.1331	.1368	.1406	.1443	.1480	.1517
0.4	.1554	.1591	.1628	.1664	.1700	.1736	.1772	.1808	.1844	.1879
0.5	.1915	.1950	1985	.2019	2054	.2088	.2123	.2157	.2190	.2224
0.6	.2257	.2291	.2324	.2357	.2389	.2422	.2454	.2486	.2517	2549
0.7	.2580	.2611	.2642	2673	.2704	.2734	2764	.2794	.2823	2852
0.8	2881	.2910	.2939	.2967	2995	.3023	.3051	.3078	.3106	.3133
0.9	.3159	.3186	.3212	.3238	.3264	.3289	.3315	.3340	.3365	.3389
1.0	3413	3438	.3461	.3485	.3508	.3531	.3554	.3577	.3599	.3621
1.1	.3643	_3665	.3686	.3708	.3729	.3749	.3770	.3790	.3810	.3830
1.2	.3849	.3869	-3888	.3907	.3925	.3944	.3962	.3980	.3997	.4015
1.3	.4032	.4049	.4066	.4082	4099	.4115	.4131	.4147	.4162	.4177
1.4	.4192	.4207	.4222	4236	.4251	.4265	.4279	.4292	.4306	.4319
1.5	.4332	.4345	.4357	.4370	.4382	.4394	.4406	.4418	.4429	.4441
1.6	.4452	.4463	.4474	.4484	.4495	-4505	.4515	.4525	.4535	.4545
1.7	.4554	.4564	.4573	.4582	.4591	.4599	.4608	.4616	A625	.4633
1.8	.4641	4649	.4656	.4664	.4671	.4678	4686	.4693	.4699	.4706
1.9	.4713	.4719	.4726	.4732	.4738	.4744	.4750	.4756	.4761	.4767
2.0	.4772	4778	.4783	.4788	4793	.4798	.4803	.4808	.4812	.4817
2.1	.4821	4826	4830	.4834	.4838	4842	.4846	.4850	.4854	.4857
2.2	.4861	.4864	.4868	.4871	.4875	.4878	.4881	.4884	.4887	.4890
2.3	.4893	.4896	.4898	.4901	.4904	.4906	.4909	.4911	.4913	.4916
2.4	.4918	4920	.4922	.4925	.4927	.4929	.4931	.4932	_4934	.4936
2.5	.4938	.4940	.4941	.4943	.4945	_4946	.4948	4949	.4951	.4952
2.6	.4953	_4955	.4956	.4957	.4959	4960	.4961	.4962	.4963	.4964
2.7	.4965	4966	.4967	4968	.4969	.4970	.4971	4972	.4973	.4974
2.8	.4974	.4975	4976	4977	_4977	.4978	.4979	4979	.4980	.4981
2.9	.4981	.4982	.4982	.4983	.4984	.4984	.4985	.4985	.4986	.4986
3.0	.4987	.4987	.4987	.4988	.4988	.4989	.4989	.4989	.4990	.4990
3.1	.4990	.4991	.4991	.4991	.4992	.4992	.4992	.4992	.4993	.4993
3.2	.4993	.4993	.4994	.4994	4994	.4994	.4994	4995	.4995	.4993
3.3	.4995	.4995	.4995	.4996	.4996	.4996	.4996	.4996	.4996	.4997
3.4	.4997	.4997	.4997	,4997	.4997	4997	.4997	4997	.4997	.4998
3.5	.4998	.4998	.4998	.4998	.4998	.4998	4998	4998	.4998	4998