NATIONAL UNIVERSITY OF SINGAPORE DEPARTMENT OF MATHEMATICS

SEMESTER 1 EXAMINATION 2005-2006

MA5205 Graduate Analysis I

November/December 2005 — Time allowed : $2\frac{1}{2}$ hours

INSTRUCTIONS TO CANDIDATES

- 1. This examination paper contains a total of **FIVE** (5) questions and comprises **FOUR** (4) printed pages.
- 2. Answer as many questions as you can.
- 3. Each question carries the same weight.

PAGE 2 MA5205

Question 1

(a) If E is a subset of \mathbb{R}^n and $x \in \mathbb{R}^n$, define

$$x + E = \{x + y : y \in E\}.$$

Show that if E is a Lebesgue measurable set, then so is x + E.

(b) Let $(\mathbb{R}, \Sigma, \lambda)$ and $(\mathbb{R}, \mathcal{P}(\mathbb{R}), \mu)$ be the Lebesgue measure space and the counting measure space on \mathbb{R} respectively. Show that for any subset E of \mathbb{R} and any $y \in \mathbb{R}$

$$(\lambda \times \mu)^*(E \times \{y\}) = \lambda^*(E).$$

Question 2

Let (Ω, Σ, μ) be a σ -finite, complete measure space and let λ and Σ_{λ} be the Lebesgue measure and the σ -algebra of Lebesgue measurable sets respectively. If f is a nonnegative extended real-valued μ -measurable function on Ω and 1 , define

$$g(x) = \begin{cases} x^{p-2} & \text{if } x > 0\\ 0 & \text{otherwise} \end{cases}$$

and

$$h(x) = \begin{cases} \int f \chi_{\{f \ge x\}} d\mu & \text{if } x > 0 \\ 0 & \text{otherwise.} \end{cases}$$

Show that

$$\int f^p d\mu = (p-1) \int g(x)h(x) d\lambda(x).$$

[Use (...) Theorem (fill in the blank). Be sure to check the hypotheses of the theorem used.]

PAGE 3 MA5205

Question 3

Let (Ω, Σ, μ) be a measure space such that $\mu(\Omega) < \infty$. Suppose that $(f_n)_{n=1}^{\infty}$ is a sequence of extended real-valued integrable functions with the following properties.

- (i) $\sup_{n} \int |f_n| d\mu < \infty$,
- (ii) For any $\varepsilon > 0$, there exists $\delta > 0$ such that $\sup_n \int |f_n| \chi_E d\mu < \varepsilon$ whenever $E \in \Sigma$, $\mu(E) < \delta$.
- (a) Show that for any $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that

$$\sup_{n}\int |f_{n}|\chi_{\{|f_{n}|\geq N\}}<\varepsilon.$$

For any extended real-valued function g defined on Ω and any $N \in \mathbb{N}$, define g^N on Ω by

$$g^N(\omega) = egin{cases} g(\omega) & & ext{if } |g(\omega)| < N \ N & & ext{if } g(\omega) \geq N \ -N & & ext{if } g(\omega) \leq -N. \end{cases}$$

From here on, assume in addition that $(f_n)_{n=1}^{\infty}$ converges to a function f pointwise.

- (b) Show that for all $N \in \mathbb{N}$, $(f_n^N)_{n=1}^{\infty}$ converges pointwise to f^N .
- (c) Show that $\lim_n \int f_n d\mu = \int f d\mu$.

PAGE 4 MA5205

Question 4

Show that a bounded real-valued function that is Riemann integrable on a bounded real interval [a, b] is Lebesgue integrable on [a, b] and that the values of the integrals are equal.

To be definite, I include the definition of the Riemann integral. Given a bounded interval [a, b] in \mathbb{R} , a partition of [a, b] is a finite sequence of points $P = (p_i)_{i=0}^n$ satisfying $a = p_0 < \cdots < p_n = b$. If f is a bounded real-valued function on [a, b] and P is a partition of [a, b], the upper and lower sums of f with respect to P are

$$U(f, P) = \sum_{i=1}^{n} \sup_{x \in [p_{i-1}, p_i]} f(x)(p_i - p_{i-1}) \quad \text{and}$$

$$L(f, P) = \sum_{i=1}^{n} \inf_{x \in [p_{i-1}, p_i]} f(x)(p_i - p_{i-1}).$$

f is Riemann integrable if there exists $R \in \mathbb{R}$ such that

$$\begin{split} \inf\{U(f,P): P \text{ is a partition of } [a,b]\} &= R \\ &= \sup\{L(f,P): P \text{ is a partition of } [a,b]\}. \end{split}$$

In this case, we call R the *Riemann integral* of f on [a,b] and denote it by $(R) - \int_a^b f$.

[The upper and lower sums correspond naturally to simple functions.]

Question 5

Let $f:[a,b]\to\mathbb{R}$ be a function of bounded variation on [a,b]. Define $V:[a,b]\to\mathbb{R}$ by V(a)=0 and $V(x)=\operatorname{Var}_{[a,x]}f$ for $a< x\leq b$. If $\int_a^b |f'|\,d\lambda=\operatorname{Var}_{[a,b]}f$, show that V is absolutely continuous and hence so is f.

END OF PAPER