PH.D. QUALIFYING EXAMINATION 2003/2004 (Sem 2) ALGEBRA

- 1. Show that if a and b are elements in a group G, then ab and ba have the same order. [10 marks]
- 2. (a) Let H and K be subgroups of a group G with H normal in G. Show that

 $HK := \{hk : h \in H, k \in K\}$

is a subgroup of G and show that H is normal in HK. [10 marks]

(b) Show that $(H \cap K)$ is normal in K and that

$$K/(H\cap K)\simeq HK/H$$
.

[10 marks]

(c) Show that if H is a normal subgroup of G such that

$$\gcd(|H|, [G:H]) = 1,$$

then H is the unique subgroup of G of order |H|.

[15 marks]

- 3. (a) Show that if R is a finite integral domain with a unit element, then R is a field. [10 marks]
 - (b) Show that if R is a finite commutative ring with a unit element, then every prime ideal of R is a maximal ideal. [10 marks]
- 4. Let R is a ring with a unit element, 1_R , in which

$$(ab)^2 = a^2b^2$$

for all $a, b \in R$. Prove that R must be commutative.

[15 marks]

5. (a) Let K be a finite field of p elements, where p is a prime. Let gcd(n,p)=1 and F be the splitting field of x^n-1_K over K. Show that if (F:K)=f then n divides q^f-1 .

[10 marks]

(b) Show that f is the smallest integer m for which $q^m - 1$ is divisible by n.

[10 marks]

END OF PAPER