Ph.D Qualifying Examination Linear Algebra

- (1) State and prove the Cayley-Hamilton theorem for a 5 by 5 real matrix A.
- (2) Let X be a 5 by 5 complex matrix. Let v₁,..., v₅ be nonzero eigenvectors of X with distinct eigenvalues. Prove that v₁,..., v₅ are linearly independent over C. Show that X is diagonalizable.
- (3) Suppose A and B are invertible real matrices. Show that

$$adj(AB) = adj(B)adj(A)$$
.

Is the above true if both A and B are not invertible matrices? If it is true give a proof. If it is false, give a counter example.

- (4) Prove that the row rank and the column rank of an 8 by 10 matrix X are the same.
- (5) Let X be a 5 by 5 symmetric real positive definite matrix (that is $\mathbf{v}^T X \mathbf{v} > 0$ for all nonzero column vectors $\mathbf{v} \in \mathbb{R}^5$). Prove that there exists an invertible upper triangular 5 by 5 matrix P such that

$$X = P^T P$$

(6) Let

$$X = \frac{1}{11} \begin{pmatrix} -6 & 28 & 14 & -3 \\ -10 & 32 & 5 & 6 \\ 5 & -5 & 25 & -3 \\ -25 & 25 & 18 & 4 \end{pmatrix}.$$

It is known that it has two only eigenvalues, namely 2 and -1. Find the characteristic polynomial p(x), minimal polynomial m(x) and Jordan canonical form D of X. Find a matrix P such that

$$X = PDP^{-1}$$

(You do not have to find P^{-1} .)

- (7) Let \langle , \rangle be an inner product on \mathbb{R}^5 . Let X be a 5 by 5 matrix such that the columns are orthogonal to each other and have length 1 with respect to \langle , \rangle .
 - (a) Suppose (,) is the usual Euclidean dot product. Show that the rows are are orthogonal to each other and have length 1 with respect to (,).
 - (b) Suppose ⟨,⟩ is the NOT the usual Euclidean dot product. Define an inner product ⟨,⟩' on R⁵ using ⟨,⟩ such that the rows are orthogonal to each other and have length 1 with respect to ⟨,⟩'.
- (8) Let X_1, X_2 be two diagonalizable 5 by 5 matrices. Suppose the matrices commute with each other, that is, $X_1X_2 = X_2X_1$. Show that the two matrices are simultaneously diagonalizable, that is, there exists a 5 by 5 matrix invertible P such that $P^{-1}X_1P$ and $P^{-1}X_2P$ are diagonal matrices.

END OF PAPER